Механические потери и механический КПД в ЦН

Общие гидравлические потери в ЦН, гидравлический КПД

Коэффициент полезного действия центробежного насоса

Безударный и ударный режимы работы центробежного насоса

На рис.5.1 представлен безударный режим работы насоса, когда на входе на лопатку вектор W1 направлен вдоль оси лопатки, а на выходе из колеса W2 направлена по касательной к спирали отвода.

На ударных режимах вектор W1 поворачивается по отношению к оси лопатки на угол атаки

 

 

Рис. 5.1

При обтекании лопаток и корпуса на безударном режиме возникают потери трения жидкости по длине hт , на ударных режимах добавляются еще вихревые потери, увеличивая общую их величину.

 

Качественно КПД учитывает потери энергии в насосе, которые переходят в тепло.

(15)

где - суммарные потери энергии в насосе.

Они делятся на три вида: гидравлические, механические и объемные.

На рис. 2.5 изображен баланс энергии в лопастном насосе К на­сосу доводится мощность N. Часть этой мощности теряется (пре­вращается в тепло).

Потерн мощности в насосе делят на механические, объемные и гидравлические.

 

 


Одним из видов потерь энергии в насосе являются потери
на преодоление гидравлического сопротивления подвода рабочего
колеса и отвода, или гидравлические потери.

 

Рис 6.1 Треугольники скоростей па входе в рабочее колесо при разных режимах работы насоса

При обтекании лопаток и корпуса на безударном режиме возникают потери трения жидкости по длине hт , на ударных режимах добавляются еще вихревые потери (рис.6.1), увеличивая общую их величину.

Общие гидравлические потери в центробежных насосах h , таким образом, равны

hГ=hт+hу (9)

Наименьшая' их величина соответствует безударному режиму, когда hу=0, hу - ударные потери.

Теоретический напор насоса - это напор, который передают лопатки рабочего колеса жидкости. Он больше полезного Н. Между ними существует связь

НТ=Н+hГ (10)

Отношение полезного напора к теоретическому называется гидравлическим коэффициентом полезного действия.

(11)

Этот КПД учитывает гидравлические потери в проточной части центробежных насосов, которые являются наибольшими из всех видов потерь. Доля гидравлических потерь в общем количестве их составляет 80-90%.

Полные гидравлические потери оцениваются как потери по длине , и ударные вдоль всей проточной части насоса, включая , подвод, рабочее колесо, отвод.

 

Механические потери образуются вне проточной части насоса и могут определятся как сумма:

(16)

где - дисковые потери;

- потери механического трения в подшипниках и уплотнениях.

Последние в насосах невелики и составляют обычно 0,1-0,2% от затрачиваемой мощности.

Более существенными являются дисковые потери, которые возникают в результате трения наружных поверхностей дисков рабочего колеса о жидкость, находящуюся между корпусом и колесом.

Дисковые потери сильно возрастают с ростом вязкости жидкости, при этом корпус может нагреваться.

В целом механические потери оцениваются с помощью механического КПД:

(19)