Основные законы электрических цепей в комплексной форме

J2

J2

Комплексные сопротивления и проводимости

Отношение комплексного напряжения к комплексному току называют комплексным сопротивлением цепи и обозначают .

,

где R, X и zактивное, реактивное и полное сопротивления цепи.

С другой стороны:

.

Тогда полное сопротивление z получим из соотношений:

 

 

 

В случае последовательного соединения элементов R,L,C комплексное сопротивление запишется в виде:

.

Отношение комплексного тока к комплексному напряжению называют комплексной проводимостью цепи и обозначают :

,

где – активная, реактивная и полная проводимости цепи.

Поскольку комплексная проводимость есть величина обратная комплексному сопротивлению, то:

.

Пусть: ; .

Тогда: .

С другой стороны: .

Тогда полную проводимость у получим из соотношений:

 

 

В случае параллельного соединения элементов G,L,C комплексная проводимость запишется в виде:

.

Очевидно, что .

 

Перевод комплексных величин в показательную форму:

1. Находим модуль: .

2. Находим аргумент: .

Окончательно: .

1. Находим модуль: .

2. Находим аргумент: .

Окончательно: .

 

Перевод показательных величин в комплексную форму:

;

.

Законы электрических цепей переменного тока в комплексной форме имеют такой же вид, как и для цепей постоянного тока, с заменой соответствующих постоянных величин комплексными: , , , , , .

Закон Ома в комплексной форме имеют вид: .

Достоинство этих выражений заключается в том, что в них учи­тывается как связь между действующими значениями тока и напряжения, так и сдвиг фаз между ними.

Первый закон Кирхгофа в применении к узлу: .

Второй закон Кирхгофа применительно к контуру: .

Возможность использовать соотношения для цепей постоянного тока справедлива и для эквивалентных преобразований.

При после­довательном соединении комп­лексное сопротивление всей цепи равно алгебраической сумме комплексных сопротивлений от­дельных ее участков: .

При параллельном соединении комплексная проводимость всей цепи равна алгебраической сумме комплексных проводимостей отдельных ее участков:

.

При смешанном соединении:

 
 
 
 
 
 
 
 

; , . , .  

Расчет сложных цепей переменного тока комплексным методом осуществляется с помощью тех же методов, что и цепей постоянного тока при замене соответствующих величин их комплексными аналогами.