Предел последовательности.

Если изобразить члены последовательности точками на числовой оси, то можно заметить, что с ростом n члены последовательности xn становятся ближе к 1 и величина|xn-1| становится все меньше.

Определение 1(аналитическое).Число а называется пределом числовой последовательности {xn}, если для любого сколь угодно малого положительного числа e можно указать такой номер N, что все члены xn последовательности, у которых номер n>N, удовлетворяют неравенству: (2)

(отрицание)

Неравенство (2) равносильно двойному неравенству:

-e<xn-a<e (если n>N), или а-e<xn<а+e (если n>N) (3)

Определение 2(геометрическое).Число а называется пределом числовой последовательности {xn}, если для каждой окрестности точки а найдется такой номер N, что для всех номеров n>N члены последовательности принадлежат этой окрестности.

,

Если последовательность имеет предел, то она называется сходящейся. В противном случае – расходящейся.

Примеры. 1)

Докажем, что

Возьмем N=+1, тогда N>.

([а] - целая часть числа а – наибольшее целое число, не превосходящее а. Например:

)

2) Покажем, что .

Докажем, что

Возьмем N=+1, тогда N>.

3) Доказать, что число (-1) не является пределом последовательности xn=(-1)n.

Доказательство. Отрицание:

В нашем случае

Т.о. для e0=

4) Последовательность называется постоянной, если все ее члены одинаковы, т.е. xn=a n=1,2,3,.. Предел постоянной последовательности =a.