Поверхностный интеграл первого рода.

Поверхностные интегралы

В теории поверхностных интегралов большую роль играет понятие площади поверхности. Определение площади поверхности как предела суммы площадей фрагментов касательных к поверхности плоскостей было введено в разделе «Двойной интеграл». Там же приведены формулы для вычисления площадей поверхностей, заданных явно и параметрически.

 

Задача о вычислении массы неоднородной оболочки.

 

Пусть S – поверхность в пространстве XYZ. Тяжелая неоднородная оболочка расположена в пространстве в виде этой поверхности. Плотность оболочки, рассчитанная на единицу площади поверхности, зависит от местоположения точки на поверхности и равна , причем – непрерывная на S функция. Для того, чтобы вычислить массу неоднородной оболочки, разобьем поверхность S на n фрагментов с площадями и на каждом таком фрагменте

 

выберем точку с координатами . Найдем значение . Предполагая, что площадь i-го поверхностного фрагмента мала и учитывая, что плотность непрерывна, получим, что масса этого фрагмента будет приблизительно равна , причем чем меньше фрагмент, тем точнее полученная масса этого фрагмента. Поэтому массу всей оболочки можно получить, просуммировав массы всех фрагментов и устремив к нулю площади фрагментов, одновременно увеличивая количество фрагментов, на которые разбита поверхность. Таким образом, выражение для массы оболочки будет иметь вид

.

 

Представим предел интегральной суммы через двойной интеграл, так как сомножитель – элемент площади. В результате предельного перехода получим .

Интеграл, стоящий в правой части последнего выражения, называется поверхностным интегралом первого рода или поверхностным интегралом по площади поверхности. Заметим, что результат интегрирования не зависит от выбора стороны оболочки.

С помощью поверхностного интеграла 1-го рода можно вычислять не только массу оболочки, но и другие физические характеристики оболочки: моменты, центр тяжести.