Решение

Условие задачи

Пример 2

В балке с двумя консолями, показанной на рис. 4.21, а надо найти угол поворота сечения А и прогиб сечения D, используя аналитический способ. Сечение балки – двутавр № 24.

Выберем начало отсчета координаты х на левом конце балки в точке А и запишем выражение для изгибающего момента на всех участках с учетом правил Клебша :

.

Подставим это выражение в дифференциальное уравнение изогнутой оси (4.16) и проинтегрируем его дважды:

  Рис. 4.21. К решению примера 2 аналитическим способом: а – схема балки с нагрузками; б – эпюры внутренних усилий; в – изогнутая ось балки  

;

.

Найдем произвольные постоянные С и D из граничных условий. В точках В и С, где находятся опоры, прогибы не возможны. Поэтому

,

.

Получили систему из двух уравнений с двумя неизвестными С и D. Решая эту систему, найдем С = 40 кН·м2, D = – 40 кН·м3. Проанализируем результат, используя геометрический смысл произвольных постоянных С и D. На рис. 4.21, в показана изогнутая ось балки, соответствующая эпюре изгибающих моментов и условиям закрепления. Точка А, находящаяся в начале координат, перемещается вверх, и поэтому следует ожидать, что будет иметь в соответствии с правилом знаков отрицательный знак. Сечение в точке А поворачивается по часовой стрелке, поэтому постоянная должна быть положительна. Полученные знаки С и D не противоречат проведенному анализу.

Теперь можно найти искомые перемещения. Угол поворота сечения А определим, подставив в выражение для на первом участке значение х = 0, то есть

кН·м2.

Чтобы найти прогиб в точке D, в выражение для прогибов подставляем м, используя все слагаемые этого выражения, так как точка находится на последнем третьем участке:

кН·м3.

Разделим полученные результаты на жесткость балки, чтобы сосчитать угол поворота в радианах, а прогиб в сантиметрах. Жесткость стальной двутавровой балки № 24:

кН·см2.

Угол поворота сечения А

рад.

Прогиб точки D

см.

Положительные знаки полученных перемещений свидетельствуют о том, что поворот сечения А происходит по часовой стрелке, а точка D перемещается вниз. Изогнутая ось балки с найденными перемещениями и точкой перегиба показана на рис. 4.21, в.