II. Решение задач.
1. Решить задачу № 947 (а).
Решение
Найдем длины сторон треугольника АВС по формуле
d = :
AB =
BC =
AC = Так как АВ = АС, то по определению равнобедренного треугольника АВС – равнобедренный. Найдем его площадь; проведем высоту АМ ВС: SΔABC = BC ∙ AM; AM – высота и медиана в равнобедренном треугольнике. |
Пусть М (x; y), тогда
x = = 3; y = = –1.
Значит, точка М (3; –1).
Найдем длину отрезка AM =
Площадь треугольника АВС равна S = = 13.
Ответ: 13.
2. Решить задачу № 946 (б).
Решение
M1 (–1; x) и M2 (2x; 3); M1M2 = d = 7. Найти x.
d = ; (2x + 1)2 + (3 – x)2 = 72;
4x2 + 4x + 1 + 9 – 6x + x2 = 49; 5x2 – 2x – 39 = 0;
D = b2 – 4ac = 4 + 780 = 784;
Ответ: –2,6; 3.
3. Решить задачу № 948 (б) на доске и в тетрадях.
Решение
Пусть точка М (0; y) лежит на оси ординат; по условию МС = MD;
(4 – 0)2 + (–3 – y)2 = (8 – 0)2 + (1 – y)2;
16 + 9 + 6y + y2 = 64 + 1 – 2y + y2;
8y = 40;
y = 5.
Значит, точка М (0; 5).
Ответ: (0; 5).
4. Решить задачу № 950 (б) на доске и в тетрадях.
Решение Найдем координаты точки пересечения диагоналей четырехугольника О (x; y): для диагонали NQ имеем: x = = –3; |
y = = 3; точка О (–3; 3).
Для диагонали МР имеем:
x = = –3; y = = 3; точка О (–3; 3).
Значит, диагонали MP и NQ точкой пересечения делятся пополам; по признаку параллелограмма MNPQ – параллелограмм.
MP =
NQ =
Ответ: 4 и 2 .
5. Решить задачу № 951 (а).
Решение
AB = = 4;
CD = = 4;
BC = = 2;
AD = =2.
Так как AB = CD = 4 и BC = AD = 2, то по II признаку параллелограмма ABCD – параллелограмм. Найдем диагонали АС и BD параллелограмма ABCD: AC =
BD =
Если диагонали равны AC = BD, то ABCD – прямоугольник.
S = AD ∙ AB = 2 ∙ 4 = 8.
Ответ: 8.