III. Проверочная самостоятельная работа.
II. Решение задач.
1. решить задачу № 782 на доске и в тетрадях.
Решение Из треугольника ECD (рис. 3) найдем по правилу вычитания векторов: |
тогда
Из треугольника ABG по правилу сложения векторов имеем
отсюда
2. решить задачу № 802 на доске и в тетрадях.
Вариант I
1. Начертите два неколлинеарных вектора и так, что = 3 см, = 2 см. Постройте
2. Четырехугольник KMNP – параллелограмм. Выразите через векторы и векторы и , где А – точка на стороне PN, такая, что PA : AN = 2 : 1, B – середина отрезка MN.
Вариант II
1. Начертите два неколлинеарных вектора и так, что = 2 см, = 3 см. Постройте вектор
2. В параллелограмме ABCD точка M – середина стороны CD; N – точка на стороне AD, такая, что AN : ND = 1 : 2. Выразите векторы и через векторы и .
Вариант III
(для более подготовленных учащихся)
1. В треугольнике ABC угол C = 90°, AC = 3 см, BC = 4 см. Постройте вектор
2. В трапеции ABCD AB || CD, AB = 3CD. Выразите через векторы и векторы и , где M – середина стороны BC, а N – точка на стороне AB, такая, что AN : NВ = 2 : 3.