I. Устная работа.
Ход урока
Урок 2
III. Самостоятельная работа.
II. Тренировочные упражнения.
1. Решить № 1066 (н – р) на доске и в тетрадях с помощью учителя.
Решение.
н) ;
о) ;
п) ;
р) = 0.
2. Решить № 1067 (в; г) на доске и в тетрадях.
Решение.
в) (–10 + (–1,3)) + (5 + 8,7) = –11,3 + 13,7 = 13,7 – 11,3 = 2,4;
г) (11 + (–6,5)) + (–3,2 + (–6)) = 4,5 + (–9,2) = – (9,2 – 4,5) = –4,7.
3. Решить № 1070 (в; г).
Решение.
в)
;
г) .
4. Решить № 1068.
5. Повторение ранее изученного материала:
Решить задачу № 1078 (д – з) на доске и в тетрадях.
Вариант I.
1. Выполните сложение:
а) –543 + 458; г) ;
б) 0,54 + (–0,83); д) .
в) ;
2. Выполните действия .
3. Найдите значение выражения х + 2,6, если х = –1,47;
; х = –18; .
4. Сколько решений имеет уравнение |х + 2| = –5?
Вариант II.
1. Выполните сложение:
а) 257 + (–314); б) –0,28 + (–0,18); в) –6 + ;
г) ; д) .
2. Выполните действия .
3. Найдите значение выражения у + (–4,2), если у = 1,83;
у = ; у = 16; у = .
4. Сколько решений имеет уравнение |у – 9| = –6?
Домашнее задание: решить № 1081 (м – р), № 1082, № 1086.
Цели: упражнять учащихся в вычитании отрицательных чисел; научить находить длину отрезка на координатной прямой; развивать логическое мышление учащихся.
1. Повторить правила сложения отрицательных чисел и сложения чисел с разными знаками. Привести примеры.
2. Решить устно № 1098 (а; б; г) и 1101 (в; г).
3. Решить № 1104, записывая на доске приведенные учащимися примеры.
4. Двое учащихся на доске выполняют упражнения из домашнего задания: 1) № 1109 (а – з); 2) № 1116.
Решение.
30 % = 0,3.
Пусть в альбоме было х российских марок, тогда иностранных марок в альбоме было 0,3х. Всего в альбоме 1105 марок.
х + 0,3х = 1105
1,3х = 1105
х = 1105 : 1,3 = 11050 : 13 = 850
х = 850.
В альбоме было 850 российских марок, а иностранных 1105 – 850 = 255 (марок).
Ответ: 255 марок, 850 марок.