I. Устная работа.

Ход урока

Урок 2

III. Самостоятельная работа.

II. Тренировочные упражнения.

1. Решить № 1066 (н – р) на доске и в тетрадях с помощью учителя.

Решение.

н) ;

о) ;

п) ;

р) = 0.

2. Решить № 1067 (в; г) на доске и в тетрадях.

Решение.

в) (–10 + (–1,3)) + (5 + 8,7) = –11,3 + 13,7 = 13,7 – 11,3 = 2,4;

г) (11 + (–6,5)) + (–3,2 + (–6)) = 4,5 + (–9,2) = – (9,2 – 4,5) = –4,7.

3. Решить № 1070 (в; г).

Решение.

в)

;

г) .

4. Решить № 1068.

5. Повторение ранее изученного материала:

Решить задачу № 1078 (д – з) на доске и в тетрадях.

Вариант I.

1. Выполните сложение:

а) –543 + 458; г) ;

б) 0,54 + (–0,83); д) .

в) ;

2. Выполните действия .

3. Найдите значение выражения х + 2,6, если х = –1,47;

; х = –18; .

4. Сколько решений имеет уравнение |х + 2| = –5?

Вариант II.

1. Выполните сложение:

а) 257 + (–314); б) –0,28 + (–0,18); в) –6 + ;

г) ; д) .

2. Выполните действия .

3. Найдите значение выражения у + (–4,2), если у = 1,83;

у = ; у = 16; у = .

4. Сколько решений имеет уравнение |у – 9| = –6?

Домашнее задание: решить № 1081 (м – р), № 1082, № 1086.

Цели: упражнять учащихся в вычитании отрицательных чисел; научить находить длину отрезка на координатной прямой; развивать логическое мышление учащихся.

1. Повторить правила сложения отрицательных чисел и сложения чисел с разными знаками. Привести примеры.

2. Решить устно № 1098 (а; б; г) и 1101 (в; г).

3. Решить № 1104, записывая на доске приведенные учащимися примеры.

4. Двое учащихся на доске выполняют упражнения из домашнего задания: 1) № 1109 (а – з); 2) № 1116.

Решение.

30 % = 0,3.

Пусть в альбоме было х российских марок, тогда иностранных марок в альбоме было 0,3х. Всего в альбоме 1105 марок.

х + 0,3х = 1105

1,3х = 1105

х = 1105 : 1,3 = 11050 : 13 = 850

х = 850.

В альбоме было 850 российских марок, а иностранных 1105 – 850 = 255 (марок).

Ответ: 255 марок, 850 марок.