Прогнозирование на основе экстраполяции тренда
Наиболее распространенным методом прогнозирования выступает экстраполяция тренда. При этом, для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной – времени.
При таком подходе к прогнозированию предполагается, что размер уровня, характеризующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить порознь их влияние. В связи с этим ход развития связывается не с какими-либо конкретными факторами, а с течением времени, то есть:
= f (t), (3.15)
Экстраполяция дает возможность получить точечное значение прогноза. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года t, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени.
Величина доверительного интервала определяется следующим образом:
, (3.16)
где:
– средняя квадратическая ошибка тренда;
– расчетное прогнозное значение уровня;
– доверительное значение критерия Стьюдента.
Метод прогнозирования на основе экстраполяции тренда базируется на следующих предпосылках:
· исходный временной ряд должен описываться плавной кривой;
· общие условия, определяющие тенденцию развития изучаемого явления в прошлом и настоящем не должны претерпевать значительных изменений в будущем;
· исходный ряд динамики должен иметь достаточное число уровней, с тем, чтобы отчетливо проявилась тенденция.
Трендовые модели выражаются различными функциями , на основе которых строятся модели прогноза и осуществляется их оценка.
На практике наибольшее распространение получили следующие виды трендовых моделей:
· линейная ;
· параболы различных степеней:
2-го порядка ;
3-го порядка (кубическая) и т.д.
· степенная:
показательная: , (3.17)
· логарифмическая: .
При этом наиболее существенным вопросом прогнозирования по трендовым моделям является проблема точного прогноза.
Точная оценка прогноза весьма условна в силу следующих причин:
· Выбранная для прогнозирования функция дает лишь приближенную оценку тенденции, так как она не является единственно возможной.
· Статистическое прогнозирование осуществляется на основе ограниченного объема информации, что, в свою очередь, сказывается на величине доверительных интервалов прогноза.
· Наличие в исходном временном ряду случайного компонента приводит к тому, что любой прогноз осуществляется лишь с определенной долей вероятности.
Рассматривая получение интервальных или точечных оценок прогноза следует учитывать, что в отдельных случаях получение более точных оценок не гарантирует надежности прогноза.
Применение трендовых моделей прогнозирования социально-экономических явлений имеет большую значимость и, несмотря на определенную простоту их реализации, часто используются для прогнозирования сложных социально-эконо-мических явлений.
Прогнозирование методом экстраполяции тренда основывается на анализе тенденций развития одномерных временных рядов социально-экономических явлений и процессов.