Поддержка исторической информации и темпоральных запросов

Генерация систем баз данных, ориентированных на приложения

Абстрактные типы данных

Ориентация на расширенную реляционную модель

 

Одним из основных положений реляционной модели данных является требование нормализации отношений: поля кортежей могут содержать лишь атомарные значения. Для традиционных приложений реляционных СУБД – банковских систем, систем резервирования и т.д. – это вовсе не ограничение, а даже преимущество, позволяющее проектировать экономные по памяти БД с предельно понятной структурой.

Однако с появлением эффективных реляционных СУБД их стали пытаться использовать и в менее традиционных прикладных системах – САПР, системах искусственного интеллекта и т.д. Такие системы обычно оперируют сложно структурированными объектами, для реконструкции которых из плоских таблиц реляционной БД приходится выполнять запросы, почти всегда требующие соединения отношений.

Приведение исходного табличного представления предметной области к "плоскому" виду является обязательным первым шагом в процессе проектирования реляционной базы данных на основе принципов нормализации. С другой стороны, абсолютно очевидно, что такое "уплощение" таблиц хотя и является необходимым условием получения неизбыточной и "правильной" схемы реляционной базы данных, в дальнейшем потенциально вызывает выполнение многочисленных соединений, наличие которых может свести на нет все преимущества "хорошей" схемы базы данных.

В "ненормализованных" реляционных моделях данных допускается хранение в качестве элемента кортежа кортежей (записей), массивов (регулярных индексированных множеств данных), регулярных множеств элементарных данных, а также отношений. При этом такая вложенность может быть, по существу, неограниченной. К настоящему времени фактически полностью сформировано теоретическое основание реляционных баз данных с отказом от нормализации.

 

Одной из наиболее известных СУБД третьего поколения является система Postgres, (создатель этой системы М.Стоунбрекер).Одно свойство системы Postgres сближает ее со свойствами объектно-ориентированных СУБД. В Postgres допускается хранение в полях отношений данных абстрактных, определяемых пользователями типов.

 

Идея очень проста: никогда не станет возможно создать универсальную систему управления базами данных, которая будет достаточна и не избыточна для применения в любом приложении. Например, если посмотреть на использование универсальных коммерческих СУБД, то можно легко увидеть, что по крайней мере в 90% случаев применяется не более чем 30% возможностей системы. Тем не менее, приложение несет всю тяжесть поддерживающей его СУБД, рассчитанной на использование в наиболее общих случаях.

Поэтому очень заманчиво производить не законченные универсальные СУБД, а нечто вроде компиляторов (сompiler compiler), позволяющих собрать систему баз данных, ориентированную на конкретное приложение (или класс приложений). Существуют как минимум два экспериментальных прототипа таких систем – Genesis и Exodus.

 

Обычные БД хранят мгновенный снимок модели предметной области. Любое изменение в момент времени t некоторого объекта приводит к недоступности состояния этого объекта в предыдущий момент времени. Самое интересное, что на самом деле в большинстве развитых СУБД предыдущее состояние объекта сохраняется в журнале изменений, но возможности доступа со стороны пользователя нет.

Конечно, можно явно ввести в хранимые отношения явный временной атрибут и поддерживать его значения на уровне приложений. Более того, в большинстве случаев так и поступают. Недаром в стандарте SQL появились специальные типы данных date и time. Но в таком подходе имеются несколько недостатков: СУБД не знает семантики временного поля отношения и не может контролировать корректность его значений; появляется дополнительная избыточность хранения (предыдущее состояние объекта данных хранится и в основной БД, и в журнале изменений); языки запросов реляционных СУБД не приспособлены для работы со временем.

Существует отдельное направление исследований и разработок в области темпоральных БД. В этой области исследуются вопросы моделирования данных, языки запросов, организация данных во внешней памяти и т.д. Основной тезис темпоральных систем состоит в том, что для любого объекта данных, созданного в момент времени t1 и уничтоженного в момент времени t2, в БД сохраняются (и доступны пользователям) все его состояния во временном интервале [t1,t2].