Серое и белое вещество.

 

Гистогенез нервной ткани удаётся проследить с момента образования нервной трубки. Её клетки, называемые медуллобластами, образуют эпителиеподобный многорядный слой. Ядра медуллобластов лежат на разных уровнях, а цитоплазматические достигают своими сужеными концами наружной пограничной перепонки, отделяющей нервную трубку от окружающей её мезенхимы, и внутренней пограничной перепонки, выстилающей просвет нервной трубки. Утолщение боковых стенок нервной трубки связано с пролиферацией и округлением клеток, смещающихся к её просвету. В совокупности эти делящиеся митотическим путём клетки образуют внутренний терминальный (зародышевый), или камбиальный к их перемещению в глубь стенки нервной трубки, где они образуют средний, или плащевой, слой, и расположенный более поверхностно наружный слой (проблема размножения клеток изложена в параграфе 3.5. данного учебника). Цитоплазма клеток наружного слоя, разрыхляясь, образует губчатую сеть, которая называется краевой зоной, или вуалью. Клетки, образовавшие губчатую сеть краевой зоны, называются спонгиобластами.Из спонгиобластов развиваются элементы нейроглии: астроциты как спонгиобласты, так и главным образом будущие нервные клетки – нейробласты. На этих стадиях нейробласты отличаются по величине своих ядер. Они значительно более крупные у нейробластов, чем у спонгиобластов. Клетки внутреннего камбиального слоя, удлиняясь, а затем принимая характерную для призматического эпителия форму, превращаются в эпендиму, которая выстилает просвет спинномозгового канала и желудочков головного мозга. На своей апикальной (верхушечной) поверхности клетки эпендимы несут мерцательные реснички. Спонгиобласты и нейробласты среднего слоя спинного мозга составляют зачаток серого вещества. Отростки нейробластов, передвигающиеся в наружный слой, дифференцируются в проводящие пути. Эти отростки окружаются развивающимися из спонгиобластов астроцитами и олигодендроцитами и образуют зачаток белого веществаспинного мозга.

Тело будущей нервной клетки покрывается снаружи глиальными клетками, как бы особой капсулой. Эти клетки получили название клеток – сателлитов. Также сателлиты образуют капсулу вегетативных нейробластов. Отростки нейробласта сопровождаются также особыми вспомогательными глиальными элементами – так называемыми шванновскими клетками. Последние представляют собой разновидность глии, которая закладывается вместе с невробластами в ганглионарной пластинке.

Шванновские клетки– разновидность клеток нейроглии, помогающих в образовании мякотной миелиновой оболочки у нейронов.

Нервная клетка будущих передних рогов спинного мозга посылает свой аксон через передние корешки к развивающимся мышцам или железистым клеткам. В нервной трубке в задних рогах одновременно развиваются будущие ассоциативные нервные клетки, отличающиеся короткими нервными отростками. Протоплазма растущих аксонов нейробластов обнаруживает способность к росту, амебоидному движению и активному «самостоятельному» передвижению между другими тканевыми элементами. На свой вершине растущий аксон несёт конусовидное утолщение – колбу роста. Изучение нейробластов в условиях прижизненных наблюдений тканевых культур и при помощи электронной оптики показало, что аксон растёт по межклеточным промежуткам в виде тонкого протоплазменного тяжа. Вскоре у периферических нервных волокон появляются мякотные, состоящие из миелина, оболочки, которые образуются в процессе дифференцировки шванновских клеток. В ряде случаев миелин отсутствует; тогда, в отличие от мякотных, говорят о безмякотных нервных волокнах. В последнее время при помощи электронной оптики прослежены особенности развития периферических миелиновых (мякотных) и лишенных миелина (безмякотных) нервных волокон. Первоначально растущий аксон лежит, примыкая к поверхности шванновских клеток, а затем вдавливается в ёё цитоплазму, увлекая за собой поверхностную плазматическую оболочку (мембрану), вследствие чего образуется так называемый мезаксон. Вокруг аксона на участках оболочки шванновской клетки в местах соприкосновения её складок с аксоном синтезируется миелин. В дальнейшем ввернувшиеся поверхности оболочки шванновской клетки начинают обвивать осевой цилиндр, разрастаясь при этом наподобие спирали. Предполагают, что процесс спирального разрастания мембраны сопряжён с вращением шванновской клетки вокруг аксона. В итоге концентрических слоёв миелина становятся так много, что они наполняют шванновскую клетку, цитоплазма которой оказывается зажатой в виде узких полос между ними. По всей своей длине мякотное нервное волокно входит в контакт с чередующимися шванновскими клетками. Через промежутки порядка 1мм миелин прерывается, оставляя открытыми участки мембраны аксона (перехваты Ранвье). В безмякотных нервных волокнах шванновские клетки образуют сплошные синцитиальные тяжи, которые «заселяются» группами аксонов. Миелинизация начинается у человека на 4-м месяце внутриутробной жизни и заканчивается лишь после рождения. В мозговых пузырях процессы протекают аналогичным образом, но с тем существенным отличием, что серое вещество развивается не только средних слоях, но и на поверхности мозговых пузырей, где образуется сложная слоистая кора больших полушарий и мозжечка.

Особую проблему составляет вопрос о причинах ориентации нервных волокон среди тканей развивающегося эмбриона. В том отношении существует несколько теорий. Согласно механической теории, или теории стереотропизма, нейробласты и их отростки распределяются благодаря механическим факторам, связанным с ультраструктурой (стереоструктурой), т.е. мицеллярной ориентацией окружающих тканей. Согласно теории хемотаксиса, или нейротропизма, направление роста аксона определяется особого рода секретом, вырабатываемым в тканях, который притягивает к колбу роста аксона. Согласно теории нейробиотаксиса, распределение нервных волокон в тканях определяется различиями в электрических биопотенциалах между дендритами и аксоном нейробласта. Направление и ориентация растущих нервных волокон наряду с перечисленными внешними факторами определяются также внутренней пространственной цитоплазматической структурой тела и отростков нейробластов. На поздних стадиях дифференцировки нейробласт, как правило, теряет способность делению.