Збільшення або зменшення числа в кілька разів. Кратне порівняння.
Відношення кратного порівняння вводиться на основі паралельного порівняння різницевого та кратного відношень. Розглянемо зміст підготовчих завдань.
Пропонуємо учням покласти в рядок 3 квадрати, а нижче покласти стільки квадратів, щоб їх було на 2 більше, ніж у верхньому рядку. Діти визначають, що в нижньому рядку квадратів на 2 більше – „стільки, скільки й у верхньому та ще 2”; стільки ж та ще 2 знаходять дією додавання; у верхньому рядку на 2 квадрати менше – „стільки ж, але без 2”; стільки ж, але без 2 знаходять дією віднімання.
Після відповідної роботи учні викладають у верхньому рядку 3 квадрати, а нижче під ними – два рази по три квадрати. З’ясовуємо, що в нижньому рядку квадратів більше, тому що поклали два рази по стільки, скільки й у першому рядку. Учитель повідомляє, що в цьому випадку кажуть, що в нижньому рядку в 2 рази більше квадратів, ніж у першому. Визначаємо, де квадратів менше. У верхньому рядку лише один раз по 3 квадрати, а в нижньому – два рази по 3 квадрати, тому у верхньому рядку в 2 рази менше квадратів, ніж у нижньому. Діти дістають висновку:
| |||||
Для того, щоб стало в 2 рази менше, ніж 6, треба 6 розділити на дві рівні частини.
З метою засвоєння понять „збільшення або зменшення числа в кілька разів”, учні виконують практичні вправи типу:
Покладіть ліворуч 2 квадрати, а праворуч в 4 рази більше. Що треба зробити, що покласти в 4 рази більше квадратів? ( По 2 квадрати взяти 4 рази) Якою дією можна обчислити, скільки квадратів треба покласти? (Дією множення). Скільки буде, якщо по 2 взяти 4 рази? Діти обчислюють і перевіряють перерахунком.
Покладіть до верхнього рядка 15 трикутників, а до нижнього – в 3 рази менше. Що слід зробити, щоб покласти в 3 рази менше, ніж 15 трикутників? (Треба 15 розділити порівну на 3.) Якою арифметичною дією можна обчислити, скільки трикутників треба покласти до нижнього рядка? (Дією ділення.) Обчислюємо та перевіряємо перерахунком.
|
Віднімаємо тоді, коли шукане число на кілька одиниць менше даного, а ділимо тоді, коли шукане число в кілька разів менше певного числа.
Правило кратного порівняння також вводиться на підставі паралельного порівняння з різницевим порівнянням. Актуалізуємо правило різницевого порівняння (щоб дізнатися, на скільки одне число більше чи менше за інше число, треба від більшого числа відняти менше), збільшення (зменшення) числа на кілька одиниць або в кілька разів.
Пропонуємо учням накреслити відрізок АВ довжиною 2 см. Під ним накреслити відрізок МК, довжина якого в 5 разів більша за довжину відрізка АВ. З’ясовуємо, який відрізок довший. У скільки разів відрізок МК довший за відрізок АВ? Щоб про це дізнатися, треба підрахувати скільки разів у довжині відрізка МК міститься по 2 см, що знайдемо арифметичною дією ділення. Отже, щоб дізнатися, в скільки разів одне число більше за інше, треба розділити більше число на менше.
Визначаємо, який відрізок має меншу довжину та в скільки разів. Довжина відрізка АВ у стільки разів менша за довжину відрізка МК, скільки разів довжина відрізка МК більша за довжину відрізка АВ. Таким чином, щоб дізнатися, в скільки разів одне число менше за інше, треба більше число поділити на менше.
Зіставляємо правила різницевого та кратного порівняння і формулюємо узагальнене правило:
Щоб дізнатися скільки одне число більше чи менше за інше, треба більш числ менше число.
На цьому етапі корисні вправи, у яких треба дізнатися, на скільки одне число більше чи менше іншого та в скільки разів воно більше чи менше даного числа, тобто для однієї й тієї самої пари чисел (в тому числі й величин).