Примеры расчета

Изгибаемые элементы

Бетонных элементов

Черт. 3. График несущей способности внецентренно сжатых

3.9 (3.8). Расчет изгибаемых бетонных элементов должен производиться из условия

(11)

 

где Wpl определяется по формуле (7); для элементов прямоугольного сечения Wpl принимается равным:

(12)

 

Кроме того, для элементов таврового и двутав­рового сечений должно выполняться условие

(13)

 

где txy касательные напряжения, определяемые как для упругого материала на уровне центра тяжести сечения.

Пример 1. Дано: межквартирная бетонная панель стены толщиной h = 200 мм, высотой Н = 2,7м, изготовленная вертикально (в кассете) из керамзитобетона на кварцевом песке-класса В15, марки по средней плотности D1600 (Еb = 14 000 МПа); полная нагрузка на 1 м стены N = 900 кН, в том числе постоянная и длительная нагрузки Nl = = 540 кН; нагрузки непродолжительного действия отсутствуют.

Требуется проверить прочность панели стены.

Расчет производим согласно п. 3.6 на действие продольной силы N = 900 кН, приложенной со случайным эксцентриситетом еа, определяемым согласно п. 3.3.

Поскольку и случайный эксцентриситет принимаем равным 10 мм, т. е. е0 = 10 мм. Закрепление панели сверху и снизу принимаем шарнирным, следовательно, расчетная длина l0, согласно табл. 17, равна l0 = Н = 2,7 м.

Так как гибкость панели расчет производим с учетом прогиба согласно п. 3.7.

По формуле (10) определим коэффициент jl,принимая b = 1,0 (см. табл. 16). Поскольку экс­центриситет продольной силы не зависит отхарактера нагрузок, здесь можно принять

тогда

Поскольку нагрузки непродолжительного дей­ствия отсутствуют, расчетное сопротивление бетона Rb, согласно п. 3.1, принимаем с учетом коэффи­циента gb2 = 0,90, т.е. Rb = 7,7 МПа, а учитывая, согласно табл. 9, коэффициенты условий работы gb3 = 0,85 и gb9 = 0,90, получим Rb = 7,7·0,85·0,90 = 5,89 МПа.

Так как

принимаем de = de,min = 0,306.

Критическую силу Ncr определим по формуле (9а), принимая площадь сечения А для 1 м длины стены, т. е. А = 200 Х 1000 = 200 000 мм2:

 

 

отсюда

 

 

Проверим условие (2), используя формулу (3):

 

 

т. е. прочность панели обеспечена.