Митохондриальные болезни.

Начиная с конца 80-х годов XX века получены убедительные доказательства связи некоторых видов наследственной патологии у человека с мутациями митохондриальной ДНК (см. гл. 4.1) В зависимости от типа мутаций митохондриальные болезни разделяют на 4 группы:

а) болезни, вызванные точковыми мутациями, приводящими к замене консервативных аминокислот в собственных белках митохондрий. К ним относятся пигментный ретинит и нейроофтальмопатия Лебера, при которой наступает двусторонняя потеря зрения. Выраженность клинических признаков у больных этими заболеваниями коррелирует с количеством мутантной мтДНК, которое у разных больных может варьировать от 5 до 100% всей мтДНК;

б) болезни, вызванные мутациями в генах т-РНК, приводящими к многочисленным дегенеративным заболеваниям с различной степенью тяжести клинических проявлений, коррелирующей с количеством мутантной мтДНК;

в) болезни вызванные делениями и дупликациями участков митохондриалъных генов. У человека описано тяжелое заболевание молодого и среднего возраста — отсроченная кардиопатия, при которой обнаружены делеции мтДНК кардиоцитов. Заболевание носит семейный характер. В ряде случаев предполагается Х-сцепленное наследование, что позволяет думать о существовании ядерного гена, мутация которого вызывает делению до 50% мтДНК кардиоцитов;

г) болезни, вызванные снижением числа копий мтДНК, что является следствием определенных мутаций. К данной группе относятся летальная инфантильная дыхательная недостаточность и синдром молочнокислого ацидоза, при которых число копий мтДНК снижается до 1—2% от нормы. Снижение содержания мтДНК в клетках различных органов приводит к развитию миопатий, нефропатий, печеночной недостаточности и т.д. вследствие ослабления синтеза белков, кодируемых мтДНК.

Изменения в ДНК митохондрий сопровождаются нарушением их функций, связанных с клеточным дыханием. Это определяет характер и степень тяжести клинических проявлений митохондриалъных болезней.

Выдвинута также гипотеза о том, что накопление спонтанно возникающих мутаций мтДНК является звеном механизмов старения и развития дегенеративных процессов у человека.

Пероксисомные болезни — группа заболеваний, обусловленных нарушением структуры и функции пероксисом, - внутриклеточных органелл, присутствующих в каждой клетке организма за исключением зрелых эритроцитов. Около 50 ферментов пероксисом обеспечивают Р-окисление очень длинноцепочечных жирных кислот (ОДЦЖК), дикарбоновых кислот, пипеколиновой кислоты, простагландинов. В пероксисомах происходят начальные этапы биосинтеза плазмалогенов, входящих в структуру миелина и составляющих от 5% до 20% фосфолипидов клеточных мембран. Одна из важнейших функций пероксисом — зашита клетки от образующегося в ней атомарного кислорода с помощью химических превращений, в которых участвуют пероксисомные каталазы.

Возникновение пероксисомных болезней обусловлено нарушением сложных ферментативных реакций внутри органелл, процессов транспорта белков через мембраны органелл и функции их рецепторов. Белки, вовлеченные в биогенез пероксисом, называют пероксинами. В настоящее время определены функции более 20 пероксинов, для 9 из которых установлена хромосомная локализация кодирующих генов, обозначаемых РЕХ. В большинстве случаев патогенетические механизмы пероксисомных болезней связаны с нарушением четырех основных биохимических процессов — синтеза плазмалогенов, окисления ОДЦЖК и фитановой кислоты и деградации пипеколиновой кислоты. Особенностью пероксисомных болезней является возникновение нескольких заболеваний при мутациях в одном и том же гене, или появление одного клинического фенотипа, при наличии мутаций в разных генах пероксинов. Среди наиболее распространенных пероксисомных болезней гепато-церебро-ренальный синдром Цельвегера, ризомелическаяточечная хондродиетрофия, синдром Рефсума и адренолейкодистрофия. Частота пероксисомных болезней составляет ): 25000-1:50000 новорожденных. На основании двух важных критериев — количества пероксисом в печени и степени нарушения их функций - эти болезни принято делить на три основные группы. К первой группе относятся пероксисомные болезни, при которых количество пероксисом в печени значительно снижено, а биохимические процессы в них нарушены. Во вторую группу входят заболевания, характеризующиеся нарушением лишь нескольких биохимических процессов в пероксисомах и нормальным их количеством в печени. При заболеваниях третьей группы биологическая функция пероксисом полностью подавлена, но их количество в печени соответствует норме.

Клиническая картина пероксисомных заболеваний включает: 1) черспно-лицевые аномалии; 2) патологию органов зрения (нарушение пигментации сетчатки, побледнение дисков зрительных нервов); 3) неврологические симптомы (мышечная гипотония, судороги, задержка раннего психомоторного развития); 4) гепатомегалию; 5) аномалии скелета (ризомелический тип укорочения конечностей).

Для демонстрации особенностей проявления пероксисомных болезней приводим клинико-генетические характеристики церебро-гепато-ренального синдрома Цельвегера, относящегося к первой группе.

Синдром Цельвегера.

Синдром Цельвегера объединяет группу генетически гетерогенных состояний. К клиническим проявлениям синдрома Цельвегера могут приводить мутации в генах пероксинов 1,2,3,5,6 и 12. Все варианты СЦ наследуются по аутосомно-рецессивному типу.

Первые симптомы отмечаются с рождения. Для больных характерна внутриутробная гипотрофия (вес при рождении не превышает 2500 г), дисморфизм в строении лица и черепа — увеличение размеров лба, монголоидный разрез глаз, периорбитальная полнота тканей, короткий вздернутый нос, микрогнатия. Среди наиболее типичных признаков: резкая мышечная гипотония, доходящая до атонии, и поликистоз почек. У всех больных отмечаются полиморфные пороки развития головного мозга. Часто диагностируется полимикрогирия, лизэнцефалия, агенезия мозолистого тела, очаги демиелинизации в белом веществе мозга, гидроцефалия. В ряде случаев выявляется патология глаз в виде врожденных катаракт и глауком, а также пороки сердца и наружных половых органов. Для заболевания характерна длительная желтуха и симптомы надпочечниковой недостаточности в первые месяцы жизни. У всех детей отмечается грубая задержка раннего психомоторного развития и снижение продолжительности жизни. Большинство больных погибает в течение первого года.

Лизосомные болезни накопления – это тяжелые наследственные заболевания обмена веществ, связанные с отсутствием лизосомальных ферментов. Недостаток этих ферментов приводит к тому, что макромолекулы (сложные комплексы белков, липидов и углеводов) не расщипляются и накапливаются в лизосомах. В результате сначала нарушается работа, клетки, затем тканей, а затем всего организма. Частота заболеваний этой группой генетических болезней составляет 1:5000 новорожденных. В зависимости от самого субстрата и группы поврежденных ферментов различают: сфинголипидозы (ганглиозидоз, болезнь Крабе, болезнь Гоше, метахроматическая лейкодистрофия, , болезнь Фарбера, болезнь Фабри, , болезнь Шиндлера, болезнь Нимана-Пика); муколипидозы и гликопротеинозы (цероидный липофусциноз, болезнь Вольмана, муколипидоз маннозидоз); мукополисахаридозы (синдром Гурлера, синдром Хантера, синдром Шейе, синдром Сан-Филиппо, синдром Морото -_Лами, синдром Моркио, синдром Слая).

Диагноз лизосомного заболевания можно заподозрить на основе внешних признаков: скелетные аномалии, грубые черты лица, а также умственной отсталости, поражений внутренних органов и систем. Манифестация этих симптомов может произойти как в период новорожденности, так и в уже зрелом возрасте.

Одно из самых известных лизосомных заболеваний – болезнь Гоше. В основе лежит незаменимого фермента бета-глюкоцереброзидазы, в результате чего мембранный жир накапливается в клетках Гоша с нарушением функций внутренних органов.

Если раньше диагноз «Болезнь Гоше» считался практически приговором, то сейчас при применении заместительной ферментотерапии имиглюцеразой у больных появилась возможность достигнуть нормальной жизни. При регулярном приеме препарата размеры печени и селезенки уменьшаются практически до нормального состояния, гемограмма нормализуется, изчезают боли в костях.

 

 

 

15. Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализациюгенетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР). Номенклатура азотистых оснований, нуклеозидов и мононуклеотидов молекулы ДНК представлена в таблице.

ДНК имеет форму спирали, в которой основания разных цепей связаны между собой водородными связями. Цепи ДНК способны разделяться с помощью специальных ферментов и служить матрицами при синтезе дочерних молекул. Важнейшее свойство ДНК — комплементарность ее цепей. Это означает, что против аденина в одной из цепей всегда стоит тимин в другой цепи, гуанин всегда соединен с цитозином. Комплементарные пары аденин и тимин соединены двумя водородными связями, а гуанин с цитозином тремя водородными связями.

Помимо водородных связей между основаниями разных цепей стабильность двойной спирали ДНК обеспечивают гликозидные связи между азотистыми основаниями и остатками дезоксирибозы, а также фосфодиэфирные связи между двумя соседними остатками дезоксирибозы.

ДНК может существовать в виде нескольких форм, различающихся числом пар оснований на виток, утлом вращения между соседними парами оснований, расстоянием между парами оснований и диаметром спирали. В условиях in vivo наиболее частой является праюсторонняя В-форма, в которой одна цепь повернута вокруг другой по часовой стрелке. Имеется также и левосторонняя Z-форма.

Какие же из перечисленных выше структурных и функциональных особенностей молекулы ДНК позволяют ей хранить и передавать наследственную информации от клетки к клетке, от поколения к поколению, обеспечивать новые комбинации признаков у потомства?

1. Стабильность. Она обеспечивается водородными, гликозидными и фосфодиэфирными связями, а также механизмом репарации спонтанных и индуцированных повреждений;

2. Способность к репликации. Благодаря этому механизму в соматических клетках сохраняется диплоидное число хромосом. Схематично псе перечисленные особенности ДНК как генетической молекулы изображены на рисунке.

3. Наличие генетического кода. Последовательность оснований в ДНК с помощью процессов транскрипции и трансляции преобразуется в последовательность аминокислот в полипептидной цепи;
4. Способность к генетической рекомбинации. Благодаря этому механизму образуются новые сочетания сцепленных генов.

Передача генетической информации в клетке основана на матричных процессах (репликации, транскрипции, трансляции). Синтез дочерней цепи (репликация) молекулы ДНК происходит по матрице одной из двух родительских цепей с образованием новой двухиепочечной молекулы ДНК. Синтез молекулы РНК совершается в процессе транскрипции ДНК по матрице одной из двух цепей ДНК. Такая матричная (информационная) РНК может рассматриваться как посредник между ДНК и белком. Далее при синтезе белков генетическая информация, закодированная в последовательности триплетов азотистых оснований (канонов), транслируется в аминокислотную последовательность полипептидных цепей. Остановимся кратко на каждом из этих процессов,

Репликация. Во время репликации происходит расхождение двух цепей ДНК, и каждая из них служит матрицей для синтеза дочерней цепи. Такой способ репликации называется полуконсервативным. При этом дезоксирибонуклеотиды встраиваются в дочернюю цепь согласно правилу комплементарности азотистых оснований (А — Т, G — С). Вновь образованная молекула состоит из одной родительской и одной дочерней цепи ДНК. Образование дочерних хромосом происходит на стадии синтеза (S) в интерфазе между митотическими делениями и перед первым делением мейоза, В анафазе удвоенные хромосомы расходятся по дочерним клеткам. Таким образом, без процесса репликации невозможно сохранение диплоидного числа хромосом в соматических клетках и образование гаплоидного набора хромосом в половых клетках после двух делений мейоза. Однако при делении клеток происходит не только сохранение числа хромосом, но и воспроизведение последовательности азотистых оснований в молекулах ДНК, основанное на комплементарностb пар оснований родительской и дочерней цепей ДНК.

Цепи отделяются друг от друга, и каждая служит матрицей для построения комплементарной цепи. В результате синтезируются две молекулы, у каждой из которых одна цепь старая и одна новая. Такой способ репликации ДНК называют полуконсервативным.