Специфика человеческих популяций.
В антропогенетике популяцией называют группу людей, проживающих на общей территории и свободно вступающих в брак. Изоляционные барьеры, препятствующие вступлению в брак носят выраженный социальный характер (например, различия в вероисповедании), поэтому в формировании популяций главную роль играет не общность территории, а родственные связи.
Демографическими показателями популяции людей являются: величина, уровень рождаемости и смертности, возрастной состав, экономическое состояние, уклад жизни. Генетически человеческие популяции характеризуются генофондами.
Популяции человека по численности делятся на крупные, малые (субпопуляции) или демы и изоляты. Большие по размерам популяции (более 4000 человек) состоят обычно из нескольких антропологических групп, имеющих различное происхождение. В таких популяциях распределение частот аллелей в генотипах поколений подчиняется закону Харди - Вайнберга, что используется в медико-генетической практике для расчета доли гетерозигот - носителей рецессивного аллеля.
Закон Харди-Вайнберга. Генетическая гетерогенность популяции при отсутствии давления эволюционных факторов остается неизменной, находясь в определенном равновесии
. Существенно изменяется популяционная структура человечества, т.к. происходит миграция населения, нарушение изолятов, изменяется система браков (классовые, религиозные, расовые запреты постепенно исчезают), растет численность людей (более 7 миллиардов) за счет людей пострепродуктивного возраста, количество людей репродуктивного возраста постепенно снижается, происходит старение популяции. Величина близкородственных браков сохраняется и составляет примерно 3% в популяции. Для эволюции система браков значения не имеет, т.к. эволюция подразумевает появление нового гена.
Факторы, повышающие изменчивость:
- мутационный процесс;
- рекомбинации;
- поток генов.
Не влияют на изменчивость:
- отбор;
- дрейф генов.
46. Генетическая структура – совокупность аллелей в данной популяции и их соотношение. Генетическая структура популяции формируется и изменяется под действием естественного и искусственного отбора. Действие естественного отбора состоит в том, что преимущественное размножение имеют особи с высокой жизнеспособностью т.е. они являются более приспособленными к условиям окружающей среды. При искусственном отборе определяющее значение имеют признаки продуктивности. В закрытой популяции соотношение доминантных и рецессивных аллелей находиться в определенных соотношениях. На постоянство тех или иных аллелей могут влиять следующие факторы: миграция, эмиграция, мутации, хищничество, отбор, генетический дрейф, конкуренция и тд. Эмиграция – внесение из других популяций новых генов, при этом в данной популяции наблюдается панмексия (свободное скрещивание
Генетическое разнообразие или генетический полиморфизм — разнообразие популяций по признакам или маркерам генетической природы. Один из видов биоразнообразия. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами:
1. Средняя гетерозиготность.
2. Число аллелей на локус.
3. Генетическое расстояние (для оценки межпопуляционного генетического разнообразия).
Генетический груз — накопление летальных и сублетальных отрицательных мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель.
«Вырождение» — наблюдаемое при близкородственном скрещивании ухудшение фенотипических характеристик потомства.[1]
В более строгом смысле генетический груз в популяционной генетике — это выражение уменьшения селективной ценности для популяции по сравнению с той, которую имела бы популяция, если бы все индивидуальные организмы соответствовали бы наиболее благоприятному генотипу. Обычно выражается в средней приспособленности по сравнению с максимальной приспособленностью.
Частью генетического груза является мутационный груз.
Генетический груз рассматривается, как мера неприспособленности популяции к условиям окружающей среды. Он оценивается по различию приспособленности реальной популяции — по отношению к приспособленности воображаемой, максимально приспособленной популяции.
Значение генетического груза обычно находится в интервале 0 < L < 1, где 0 — отсутствие генетического груза.
47.Антропогене́з[1] — часть биологической эволюции, которая привела к появлению человека разумного (лат. Homo sapiens), отделившегося от прочих гоминид, человекообразных обезьян и плацентарных млекопитающих, процесс историко-эволюционного формирования физического типа человека, первоначального развития его трудовой деятельности, речи. Изучением антропогенеза занимается множество наук, в частности антропология, палеоантропология, генетика, лингвистика.
В эволюционном контексте термин «человек» относится не только к ныне живущим людям, но и к представителям вымерших видов рода Homo. Кроме того, исследования антропогенеза распространяются на других гоминид, например, австралопитеков. Род Homo отделился от австралопитеков или подобных им гоминин около 2 млн лет назад в Африке. Существовало несколько видов людей, большинство из которых вымерло[2]. К ним, в частности, относятся эректусы и неандертальцы.
Важнейшими этапами антропогенеза, отделившими человека от других гоминид и выделившими его из мира животных, были начало изготовления орудий труда, освоение огня и появление языка.
Начиная с H. habilis, люди использовали каменные орудия, всё более искусно изготовленные (см. Палеолит). В последние 50 тыс. лет технология и культура изменяются быстрее, чем в предшествующие эпохи.
Считается, что в условиях современного общества (в первую очередь высокого уровня развития медицины) влияние на эволюцию человека таких факторов, как естественный отбор, волн численности и изоляции, значительно снизилось. Неизменным осталось лишь влияние мутационного процесса. Делается вывод, что в обозримом будущем ожидать существенного изменения биологического облика человека не приходится[29][неавторитетный источник? 162 дня] И единственное направление эволюции, в котором человек будет продолжать эволюционировать, это путь по приобретению резистентности к болезням, которые до сих пор приводят к летальному исходу. По сей день производятся исследования по выяснению путей эволюции человека.
Медико-генетические консультации – один из видов специализированной
медицинской помощи, суть которой состоит в диагностике наследственных
заболеваний, в прогнозировании вероятности рождения больного ребёнка и
помощи семье в принятии решения о деторождении.
Основные задачи медико-генетического консультирования включают:
1. установление точного диагноза наследственного заболевания;
2. определение типа наследования заболевания в данной семье;
3. расчёт риска повторения болезни в семье;
4. определение наиболее эффективного способа профилактики;
5. объяснение обратившимся смысла собранной и проанализированной
информации, медико-генетического прогноза и методов профилактики.
48.Человек как объект генетического исследования
Раздел генетики, изучающий наследственность и изменчивость у человека, называется антропогенетикой или генетикой человека. Генетика человека - это наука о наследственно обусловленных различиях между людьми. Из генетики человека выделяется медицинская генетика, исследующая механизмы развития наследственных болезней, возможности их лечения и профилактики. В настоящее время человек хорошо изучен морфологически, физиологически, биохимически, что способствует рассмотрению его генетических особенностей.
Изучение генетики человека связано с биологическими и социально-этическими особенностями.
Методы изучения генетики человека:
-Генеалогический метод основан на анализе наследования свойств и признаков человека по родословным. Метод был впервые предложен Ф. Гальтоном, условные обозначения (символы) - Юстом. Он включает два этапа: составление родословной и генеалогический анализ.
Составление родословной складывается из сбора сведений о семье, начиная с пробанда, и графического изображения родословной с использованием стандартных условных обозначений (символов). Генеалогический анализ позволяет установить: является ли признак наследственным; определить тип наследования (аутосомно-доминантный, аутосомно-рецессивный, сцепленный с полом) и генотипы членов родословной; прогнозировать вероятность проявления признака в потомстве.
-Близнецовый метод - это изучение пар близнецов путем установления внутрипарного сходства (конкордантности) и различия (дискордантности) между ними.
-Цитогенетический метод - метод микроскопического изучения наследственных структур клетки - хромосом. Он включает кариотипирование и определение полового хроматина.
-Методы пренатальной диагностики предназначены для предупреждения рождения ребенка с патологией (первичная профилактика наследственных болезней). Выбор метода зависит от конкретной ситуации в семье и состояния беременной женщины.
- Метод моделирования наследственных болезней. Биологическое моделирование базируется на законе гомологических рядов наследственной изменчивости Н.И. Вавилова, согласно которому генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости. У филогенетически родственных организмов проявляются однозначные реакции на определенные воздействия среды, в том числе на воздействие мутагенных факторов.
-Онтогенетический (биохимический) метод. Метод основан на использовании биохимических методик для выявления метаболических нарушений в индивидуальном развитии организма, вызванных мутантным геном ( ген - фермент - признак ).
-Популяционно-статистический метод. Метод основан на изучении генетического состава популяций.
49.Наследственные болезни человека – заболевания, вызванные хромосомными и генными дефектами. Основой наследственных заболеваний являются генные, хромосомные и митохондриальные нарушения наследственной информации.
Классификация наследственных болезней человека
Генетические заболевания. Возникают как результат повреждения ДНК на уровне гена. К таким заболеваниям относятся болезнь Ниманна—Пика и фенилкетонурия.
Хромосомные заболевания. Болезни, связанные с аномалией количества хромосом или аберрациями хромосом. Примерами хромосомных заболеваний являются синдром Дауна, синдром Клайнфельтера и синдром Патау.
Заболевания с наследственной предрасположенностью (гипертония, сахарный диабет, ревматизм, шизофрения, ишемическая болезнь сердца).
Профилактика наследственных болезней
Наиболее эффективным и распространенным методом профилактики наследственных болезней является медико-генетическое консультирование, которое позволяет предупредить появление в семье больного ребенка. Прежде всего это касается тяжелых пороков развития и наследственных болезней.
Наследственные заболевания – трагедия не только для больного, но и для всей его семьи. Ранняя постановка диагноза при наследственной патологии поможет не только подготовиться к болезни морально, но и определить возможные методы лечения.
Медико-генетические консультации – один из видов специализированной
медицинской помощи, суть которой состоит в диагностике наследственных
заболеваний, в прогнозировании вероятности рождения больного ребёнка и
помощи семье в принятии решения о деторождении.
Основные задачи медико-генетического консультирования включают:
1. установление точного диагноза наследственного заболевания;
2. определение типа наследования заболевания в данной семье;
3. расчёт риска повторения болезни в семье;
4. определение наиболее эффективного способа профилактики;
5. объяснение обратившимся смысла собранной и проанализированной
информации, медико-генетического прогноза и методов профилактики.
50.Генная, или генетическая инженерия (genetic engineering, genetic modification technology) – это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне
Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК (recDNA) или рекРНК (recRNA) – вне биологических систем (in vitro), а затем вводить их в клетки.
Задачи генной инженерии
Основные направления генетической модификации организмов:
– придание устойчивости к ядохимикатам (например, к определенным гербицидам);
– придание устойчивости к вредителям и болезням (например, Bt-модификация);
– повышение продуктивности (например, быстрый рост трансгенного лосося);
– придание особых качеств (например, изменение химического состава).
Методы генной инженерии
Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
Для получения исходных фрагментов ДНК разных организмов используется несколько способов:
– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).
– Прямой химический синтез ДНК, например, для создания зондов.
– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).
Эколого-генетические риски ГМ-технологий
Генная инженерия относится к технологиям высокого уровня (high technology). В противоположность технологиям низкого уровня, высокие биотехнологии характеризуются высокой наукоемкостью, т.е. использованием рабочих систем, полученных с использованием самых современных методов экологии, генетики, микробиологии, цитологии, молекулярной биологии. Материалы, применяемые в высоких биотехнологиях, часто нуждаются в специальной подготовке. Для реализации таких технологий требуется специальное технологическое оборудование, обслуживаемое квалифицированными специалистами. Из-за нехватки таких специалистов расширение высокотехнологичного производства сопровождается его автоматизацией и компьютеризацией.
ГМ-технологии (GM-technology) используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.
Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Поэтому технологии генной инженерии (GM-technology) вызывают у населения вполне понятное недоверие.
Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез (внедрение в геном генетически модифицируемого организма чужеродных генов) в ближайшем будущем может быть вытеснен цисгенезом (внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида).
Квентин, отдай пушку. ((