Мутации -это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы, у которых произошла мутация, называются мутантами.

24.

18.

Типы взаимодействия.

1.Кооперация

2.Комплементарность

3.Эпистаз

4.Полимерия

5.Множественное действие (плеотропия)

Кооперация– появление новообразований при совместном действии двух доминантных неаллельных генов, когда в гомозиготном или гетерозиготном состоянии развивается новый признак отсутствующий у родительских форм.

Комплементарность – такой тип наследования, при котором неаллельные гены взаимно дополняют друг друга.

Эпитаз– такой тип наследования, при котором действие одного гена подавляется действием другого неаллельного гена.

Полимерия– тип наследования, при котором на выраженность признака влияет несколько неаллельных генов.

Множественное действие генов- ситуации, когда один ген определяет развитие нескольких свойств и признаков организма.

Экспрессивность-степень фенотипич. проявления одного и того же аллеля определённого гена у разных особей Образно ее можно сравнить со степенью тяжести болезни в клинической практике. Экспрессивность подчиняется законам распределения Гаусса (некоторые в малом или среднем количестве). В основе изменчивости экспрессивности лежат и генетические факторы, и факторы внешней среды. Экспрессивность – очень важный показатель фенотипического проявления гена. Количественно ее степень определяют, используя статистический показатель.

Пенетрантность –количество особей (%), проявляющих в фенотипе данный ген, по отношению к количеству особей, у которых этот признак мог бы проявиться. Пенетрантность свойственна проявлению многих генов. Важен принцип – «все или ничего» - либо проявляется, любо нет. Проявление гена у 100% особей с соответствующим генотипом называется полной П., в остальных случаях —неполной П.

Плейотропия(от греч. Pleion— более многочисленный, больший и tropos — поворот, направление), множественное действие гена, способность одного наследственного фактора — гена — воздействовать одновременно на несколько разных признаков организма.

генов, расположенных в разных участках хромосомы или в разных хромосомах (т. н. мутантные аллели).

Генокопии (лат. genocopia)— это сходные фенотипы, сформировавшиеся под влиянием разных неаллельных генов. То есть это одинаковые изменения фенотипа, обусловленные аллелями разных генов, а также имеющие место в результате различных генных взаимодействий или нарушений различных этапов одного биохимического процесса с прекращением синтеза.

Ген-модификатор- ген, усиливающий или ослабляющий действие главного гена и неаллельный ему.

19.Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются, как правило, вместе.

Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин – 23 группы сцепления, у мужчин – 24.

Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совместное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО), а также для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.

В большинстве случаев гены, локализованные в одной хромосоме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромосомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происходит рекомбинация генов.

Гаметы и зиготы, содержащие рекомбинации сцепленных генов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить частоту кроссинговера в процентах по формуле: отношение числа кроссо-верных гамет (особей) к общему числу гамет (особей) умножить на 100 %.

По проценту кроссинговера между двумя генами можно определить расстояние между ними единица расстояния 1 % кроссинговера.

Частота кроссинговера говорит и о силе сцепления между генами. Сила сцепления между двумя генами равна разности между 100 % и процентом крос-синговера между этими генами.

Генетическая карта хромосомы– это схема взаимного расположения генов, находящихся в одной группе сцепления. Определение группы сцепления осуществляется гибридологическим методом, т. е. путем изучения результатов скрещивания, а исследование хромосом – цитологическим методом с проведением микроскопического исследования препаратов. Для определения применяют хромосомы с измененной структурой. Выполняют стандартный анализ диги-бридного скрещивания, в котором один исследуемый признак кодируется геном, локализованным на хромосоме с измененной структурой, а второй – геном, локализованным на любой другой хромосоме. В случае если наблюдается сцепленное наследование этих двух признаков, можно говорить о связи данной хромосомы с определенной группой сцепления.

На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теориюнаследственности, сущность которой заключается в следующем:

-Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

- Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

- Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

- В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

- Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

- На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

20.Пол- совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

1.2Наследование признаков, контролируемых полом

Имеется ряд признак, контролируемых генами, расположенными в аутосомах, однако для проявления этих признаков необходима определенная среда, создаваемая генами, находящимися в половых хромосомах (например, гены, определяющие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием пары Х-хромосом, в присутствии одной Х-хромосомы мужские признаки проявляются. Такие признаки называются обусловленными или контролируемыми полом. Появление лысины - аутосомно-доминантный признак, но проявляется практически только у мужчин при наследовании, контролируемом полом, у женщин подавляются гены, детерминирующие рост бороды.

2.Сцепленное наследование признаков

Наряду с признаками, наследуемыми независимо, обнаружены признаки, наследуемые совместно (сцепленно). Экспериментальное наследование этого явления, проведенное Т.Г. Морганом и его группой (1910-1916), подтвердило хромосомную локализацию генов и легло в основу хромосомной теории наследственности.

21.Определе́ние по́ла, или детермина́ция по́ла — биологический процесс, в ходе которого развиваются половые характеристики организма. Большинство организмов имеют два пола. Иногда встречаются также гермафродиты, сочетающие признаки обоих полов. Некоторые виды имеют лишь один пол и представляют собой самок, размножающихся без оплодотворения путём партеногенеза, в ходе которого на свет появляются также исключительно самки.

Варианты механизмов определения пола:

Половое размножение и проявление полового диморфизма широко распространено в различных таксономических группах. Для механизмов полоопределения характерно большое разнообразие, что свидетельствует о неоднократности и независимости возникновения пола в различных таксонах[2]. Во многих случаях пол определяется генетически. Генетическая детерминация пола— наиболее распространённый способ определения пола у животных и растений, пол при этом может определяться серией аллелей одного или нескольких аутосомных генов, или детерминация пола может происходить при помощи половых хромосом с пол-определяющими генами. При хромосомном определении пола набор половых хромосом у самцов и самок, как правило, разный из-за их гетероморфности, и пол определяется комбинациями половых хромосом: ХY, ZW, X0, Z0. В других случаях пол определяется факторами окружающей среды.

Полово́й диморфи́зм(от др.-греч. δι- — два, μορφή — форма) — анатомические различия между самцами и самками одного и того же биологического вида, исключая различия в строении половых органов. Половой диморфизм может проявляться в различных физических признаках.

22.Изменчивость —разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм.

Различают несколько типов изменчивости:

Наследственную (генотипическую) и ненаследственную (фенотипическую, паратипическую).

Индивидуальную (различие между отдельными особями) и групповую (между группами особей, например, различными популяциями данного вида). Групповая изменчивость является производной от индивидуальной.

Качественную и количественную.

Направленную и ненаправленную

Различают два вида изменчивости: фенотипическую (модификационная) и генотипическую. Фенотипическаяизменчивость – это изменение организмов под действием факторов среды и эти изменения не наследуются. Эта изменчивость не затрагивает гены организма, наследственный материал не изменяется.

Генотипическаяизменчивость - при генотипической изменчивости происходит изменение наследственного материала и, обычно, эти изменения наследуются. Это основа разнообразия живых организмов. Различают два вида генотипической изменчивости: мутационная и комбинативная.

Закон Вавиловагласит: "Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, т. е. виды, тем полнее сходство в рядах их изменчивости

23.Модификационная (фенотипическая) изменчивость —изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Фенокопии – это ненаследственное изменение генотипа, которое напоминает наследственные заболевания (увеличение щитовидной железы на территории, где в воде или земле не хватает йода).

По способу возникновения,различают спонтанные и индуцированные мутации Спонтанныепроисходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время, очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.

Индуцированныемутации возникают при воздействии на человека мутагенами - факторами, вызывающими мутации.

Мутагенез — внесение изменений в нуклеотидную последовательность ДНК (мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.

Канцерогене́з— сложный патофизиологический процесс зарождения и развития опухоли.

25.Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Хуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

По характеру действия генные мутации могут быть доминант­ными или рецессивными. Чаще мутантный ген обладает рецессив­ным эффектом. Нормальный аллель подавляет при этом дейст­вие измененного гена. По характеру влияния мутантных генов на контроль биосинтеза белков и ферментов выделяют пять типов мутаций: гипоморфные, гиперморфные, антиморфные, неоморф-ные и аморфные.

Если ген мутирует в рецессивное состояние, то для мутантно-го аллеля чаще всего характерно уменьшение количества того же самого биохимического продукта, синтез которого определяется исходным доминантным аллелем данного гена. Такие мутации называют гипоморфными. При гиперморфных генных мутациях в отличие от гипоморфных количество биохимического продукта, синтезируемого под контролем данного гена, не уменьшается, а увеличивается. К антиморфным генным мутациям относятся му­тации, при которых мутантный аллель вызывает образование продукта, тормозящего синтез или действие продукта исходного аллеля этого гена. Неоморфные генные мутации характеризуются тем, что мутантный аллель определяет синтез в организме биохи­мического продукта, отличающегося от продукта, специфичного для исходного немутантного аллеля и не взаимодействующего с этим продуктом. Иногда в организме в результате данной мута­ции перестает вырабатываться продукт, характерный для данного гена, т. е. ген полностью инактивируется. Такая мутация называ­ется аморфной.

Генные мутации могут представлять дефекты репликации, спирализации, репарации ДНК, посттрансляционные нарушения синтеза структурных белков и т. д.

Молекулярный механизм и причины возникновения генных му­таций. Изучение молекулярной природы генных мутаций пока­зало наличие в структуре ДНК следующих типов изменений, соответствующих участкам отдельных генов: 1) замена (транзи-ции и трансверсии) одних нуклеотидов на другие; 2) вставка или добавление отдельных нуклеотидов в цепочку ДНК; 3) делеция (потеря) отдельных нуклеотидов; 4) делеции групп оснований; 5) инверсия — поворот на 180е отдельных оснований; 6) транспози­ции — перенос пар оснований внутри гена на новое место.

По характеру влияния на процессы транскрипции и трансля­ции выделяют три основные категории генных мутаций:

1)миссенс-мутации (транзиции, трансверсии). Возни­кают при замене нуклеотида внутри кодона. Это приводит к вставке на определенном месте в цепи полипептида иной амино­кислоты. В результате может измениться физиологическая роль белка, что создает фон для действия естественного отбора;

2) нонсенс-мутации (транзиции, трансверсии) — по-

явление внутри гена концевых кодонов за счет замены отдель­ных оснований в пределах кодонов. В результате процесс транс­ляции обрывается в месте появления терминального кодона;

3) мутации сдвига рамки чтения. Возникают при появлении внутри гена вставок оснований и делеций. Это приводит к изменению смыслового прочтения информации гена в процессах синтеза белка вследствие новых комбинаций основа­ний в триплетах, так как триплеты после выпадения или вставки приобретают новый, состав кодона из-за сдвига на одно основа­ние. В результате вся цепь полипептида после генной мутации в ДНК получает иные аминокислоты. Мутации, возникающие у животных, имеют разную судьбу. Часть прямых мутаций может нивелироваться обратными изменениями генов. В результате об­ратных мутаций полностью или частично восстанавливается ак­тивность мутантного гена. Обратные мутации возникают редко.

Частота возникновения спонтанных мутаций зависит от гено­типа, возраста, физиологического состояния организма и т. д. У старых самок ожидаются более частые случаи нерасхождения, хромосом при созревании яйцеклеток. При длительном хранении гамет с большей частотой могут происходить изменения в ДНК. Это вероятно при нарушении сроков осеменения животных.

26.Эксцизионная репарация нуклеотидов (NER) в клетках высших эукариот - многостадийный процесс, с помощью которого распознаются и удаляются из ДНК повреждения, вызывающие заметные нарушения ее регулярной структуры, такие, как УФ-повреждения и объемные химические аддукты. В клетках высших эукариот NER - универсальный путь удаления объемных повреждений. Нарушения в работе системы NER ассоциированы с появлением симптомов таких заболеваний, как пигментная ксеродерма, синдром Коккейна и трихотиодистрофия, которые характеризуются повышенной чувствительностью к УФ-облучению и высокой предрасположенностью к онкологическим заболеваниям (в случае пигментной ксеродермы), а также множественными системными неврологическими и иммунологическими аномалиями. Система NER эукариот удаляет из поврежденной цепи ДНК 24-32-звенные фрагменты с последующим восстановлением интактной двойной спирали с помощью репаративного синтеза и лигирования. В процесс NER вовлечено примерно 30 полипептидов. Существуют две ветви NER - репарация, сопряженная с транскрипцией (TCR), и общегеномная репарация (GGR), различающиеся типом белка-сенсора, который осуществляет первичное узнавание повреждения. В данном кратком обзоре рассмотрены современные представления о молекулярных механизмах, лежащих в основе процессов узнавания повреждений и их удаления из ДНК млекопитающих.

27. Виды мутаций

Существует несколько классификаций мутаций по различным критериям. В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

-геномные

-хромосомные

-генные

Геномные мутации

Геномные — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989).

В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

Хромосомные мутации

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н.

Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания чёрной формы — хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

28. Размножение– универсальное свойство всех живых организмов, способность воспроизводить себе подобных. С его помощью происходит сохранение во времени видов и жизни в целом. Жизнь клеток, намного короче жизни самого организма, поэтому его существование поддерживается только за счет размножения клеток. Различают два способа размножения – бесполое и половое. При бесполом размножении главным клеточным механизмом, обеспечивающим увеличение числа клеток, является митоз. Родителем является одна особь. Потомство представляет собой точную генетическую копию родительского материала. Половое размножение – более прогрессивная форма размножения, очень широко распространено в природе, как среди растений, так и среди животных. Образующиеся в процессе полового размножения организмы отличаются друг от друга генетически, а также по характеру приспособленности к условиям обитания.

1. Биологическая роль бесполого размножения Поддержание приспособленности усиливает значение стабилизирующего естественного отбора; обеспечивает быстрые темпы размножения; используется в практической селекции.

2. Биологический смысл полового размножения состоит в том, что возникающие организмы могут сочетать полезные признаки отца и матери. Такие организмы более жизнеспособны. Половое размножение играет важную роль в эволюции организмов.

29. Гаметогенез— это процесс образования половых клеток. Протекает он в половых железах — гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом.

Гаметогенез — это последовательный процесс, которых складывается из нескольких стадий — размножения, роста, созревания клеток. В процесс сперматогенеза включается также стадия формирования, которой нет при овогенезе.

Стадии гаметогенеза

1. Стадия размножения. Клетки, из которых в последующем образуются мужские и женские гаметы, называются сперматогониями и овогониями соответственно. Они несут диплоидный набор хромосом 2n2c. На этой стадии первичные половые клетки многократно делятся митозом, в результате чего их количество существенно возрастает.

2. Стадия роста. Kлетки увеличиваются в размерах и превращаются в сперматоциты и овоциты I порядка (последние достигают особенно больших размеров в связи с накоплением питательных веществ в виде желтка и белковых гранул). Эта стадия соответствует интерфазе I мейоза. Важное событие этого периода — репликация молекул ДНК при неизменном количестве хромосом. Они приобретают двунитчатую структуру: генетическая формула клеток в этот период выглядит как 2n4c.

3. Стадия созревания. Происходят два последовательных деления — редукционное (мейоз I) и эквационное (мейоз II), которые вместе составляют мейоз. После первого деления (мейоза I) образуются сперматоциты и овоциты II порядка (с генетической формулой n2c), после второго деления (мейоза II) — сперматиды и зрелые яйцеклетки (с формулой nc) с тремя редукционными тельцами, которые погибают и в процессе размножения не участвуют.

4. Стадия формирования, или спермиогенеза (только при сперматогенезе). В результате этого процесса каждая незрелая сперматида превращается в зрелый сперматозоид (с формулой nc), приобретая все структуры, ему свойственные.

30. Онтогене́з(от греч. οντογένεση: ον — существо + γένεση — происхождение, рождение) — индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом, от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до конца жизни.

У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.

Основные атрибуты онтогенеза

– Исходная запрограммированность процессов. Наличие уникальной неизменной генетической программы развития, сформированной вследствие мейоза и оплодотворения

– Необратимость онтогенеза. При реализации генетической программы невозможен возврат к предыдущим стадиям

– Углубление специализации: по мере развития уменьшается вероятность смены траектории онтогенеза

– Адаптивный характер: поливариантность онтогенеза обеспечивает возможность приспособления к различным условиям

– Неравномерность темпов: скорость процессов роста и развития изменяется.

– Целостность и преемственность отдельных этапов. Признаки, появляющиеся на более поздних стадиях, базируются на признаках, проявляющихся на ранних стадиях

– Наличие цикличности: существует цикличность старения и омоложения

– Наличие критических периодов, связанных с выбором пути в узловых точках (точках бифуркации) или с преодолением энергетических порогов.

Основные типы онтогенеза

1. Онтогенез организмов с бесполым размножением и/или при зиготном мейозе (прокариоты и некоторые эукариоты).

2. Онтогенез организмов с чередованием ядерных фаз при споровом мейозе (большинство растений и грибов).

3. Онтогенез организмов с чередованием полового и бесполого размножения без смены ядерных фаз. Метагенез – чередование поколений у Кишечнополостных. Гетерогония – чередование партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых.

4. Онтогенез с наличием личиночных и промежуточных стадий: от первично-личиночного анаморфоза до полного метаморфоза. При недостатке питательных веществ в яйце личиночные стадии позволяют завершить морфогенез, а также в ряде случаев обеспечивают расселение особей.

5. Онтогенез с выпадением отдельных стадий. Утрата личиночных стадий и/или стадий бесполого размножения: пресноводные гидры, олигохеты, большинство брюхоногих моллюсков. Утрата конечных стадий и размножение на ранних этапах онтогенеза: неотения.

Таким образом, существует множество основных типов онтогенеза и еще большее число производных типов. В теории эволюции обычно рассматривается онтогенез на примере цветковых растений и позвоночных животных.

31.СТРОЕНИЕ ПОЛОВЫХ КЛЕТОК (ГАМЕТ)

Гаметы представляют собой высокодифференцированные клетки. В про­цессе эволюции они приобрели приспособления для выполнения специ­фических функций Ядра как мужских, так и женских гамет в равной мере содержат наследственную информацию, необходимую для развития организма Но дру­гие функции яйцеклетки и сперматозоида раз­личны, поэтому по строению они резко отли­чаются,

Яйцеклетки неподвижны, имеют шарообраз­ную или слегка вытянутую форму (рис. 34). В яйце содержатся все типичные клеточные «органоиды, но строение его отличается от дру­гих клеток, так как приспособлено для реали­зации возможности развития целого организ­ма. Размеры яйцеклеток значительно крупнее, чем соматических. Внутриклеточная структура цитоплазмы в яйцах

спе­цифична для каждого вида животных, чем обеспечиваются видовые (а нередко и индивидуальные) особенности развития. В яйцах содер­жится ряд веществ, необходимых для развития зародыша. К их числу относится питательный материал (желток). У некоторых видов живот­ных накапливается столько желтка в яйцах, что они могут быть видимы невооруженным глазом. Таковы икринки рыб и земноводных, яйца реп­тилий и птиц. Из современных животных наиболее крупные яйца у сель­девой акулы - 29 см в диаметре; диаметр яйца страуса 10,5 см, куриЦЫ - 3,5 см. Небольшие размеры имеют яйца животных, у которых раз­вивающийся зародыш получает питание из окружающей среды, на­пример у высших млекопитающих. Диаметр яйца мыши 60 ц., коровы 100 ц. Яйцо человека в поперечнике имеет 130-200 ц.

Сперматозоиды обладают способностью к движению, чем в известной мере обеспечивается возможность встречи гамет. По внешней морфоло­гии и малому количеству цитоплазмы сперматозоиды резко отличаются от всех других клеток, но все основные органоиды в них имеются.

Типичный сперматозоид имеет головку, шейку и хвостовую нить. На переднем конце головки расположена акросомя, состоящая из видоизмененного комплекса Гольджи. Основную массу головки зани­мает ядро. В шейке находится центриоль и спиральная нить, образован­ная митохондриями.

При исследовании сперматозоидов под электронным микроскопом об­наружено, что протоплазма головки сперматозоида имеет не коллоидное, а жидко-кристаллическое состояние. Этим достигается' устойчивость сперматозоидов к неблагоприятным влияниям внешней среды. Напри­мер, они в меньшей степени повреждаются ионизирующей радиацией по сравнению с незрелыми половыми клетками.

Размеры сперматозоидов всегда микроскопические. Наиболее крупные сперматозоиды у тритона - около 500 ц,, у домашних животных: собаки,. быка, лошади, барана - от 40 до 75 ц. Размеры сперматозоидов чело­века колеблются в пределах 52-70 ц. Все сперматозоиды несут одно­именный (отрицательный) электрический заряд, что препятствует их склеиванию. Число сперматозоидов, образуемых животными, колоссаль­но. Например, при половом акте собака выделяет около 60 млн. сперма­тозоидов, баран - до 2 млрд., жеребец - около 10 Млрд. человек - около 200 млн.

Процесс формирования половых клеток (гамет) известен под общим» названием гаметогенеза. Он характеризуется рядом весьма важных био­логических процессов и протекает несколько по-разному при созрева­нии сперматозоидов (сперматогенез) и яиц (овогенез).

32. Эмбриогенез всех позвоночных, в том числе и человека, можно разделить на три периода.

1. Дробление: оплодотворенное яйцо, spermovium, или зигота последовательно делится на клетки (2,4,8,16 и так далее) в результате чего сначала образуется плотный многоклеточный шар, морула, а затем однослойный пузырек – бластула, которая содержит в середине первичную полость, бластоцель. Длительность этого периода – 7 дней.

2. Гаструляция заключается в превращении однослойного зародыша в двух-, а позже трехслойный – гаструлу. Первые два слоя клеток называются зародышевыми листками: внешний эктодерма и внутренний энтодерма (до двух недель после оплодотворения), а возникающий позже между ними третий (средний) слой получает название среднего зародышевого листка - мезодермы. Вторым важным результатом гаструляции у всех хордовых является возникновение осевого комплекса зачатков: на дорсальной (спинной) стороне энтодермы возникает зачаток спинной струны, хорды, а на вентральной (брюшной) ее стороне – зачаток кишечной энтодермы; на дорзальной стороне зародыша, по средней линии его из эктодермы выделяется нервная пластинка – зачаток нервной ситеми, а остальная эктодерма идет на построение эпидермиса кожи и потому называется кожной эктодермой.

В дальнейшем зародыш растет в длину и превращается в цилиндрическое образование с головным (краниальним) и хвостовым каудальным концами. Этот период длится до конца третьей недели после оплодотворения.

3. Органогенез и гистогенез: нервная пластинка погружается под эктодерму и превращается в нервную трубку, которая состоит из отдельных сегментов – невротомов, – и дает начало развитию нервной системы. Мезодермальные зачатки отшнуровываются от энтодермы первичной кишки и образуют парный ряд метамерно размещенных мешков, которые, разрастаясь по бокам от тела зародыша, делятся каждый на два отдела: спинной, что лежит по бокам от хорды и нервной трубки, и брюшной, что лежит по бокам от кишки. Спинные отделы мезодермы образуют первичные сегменты тела – сомиты, каждый из которых в свою очередь делится на склеротом, который дает начало скелету и миотом, из которого развивается мускулатура. Из сомита (на боковой его стороне) выделяется также кожный сегмент – дерматом. Брюшные отделы мезодермы, которые называются спланхнотомами, образуют парные мешки, которые содержат вторичную полость тела.

Кишечная энтодерма, которая осталась после обособления хорды и мезодермы, образует вторичную кишку – основание для развития внутренних органов. В последующем закладываются все органы тела, материалом для построения которых служат три зародышевых листка.

1. Из внешнего зародышевого листка, эктодермы, развиваются:

а) эпидермис кожи и его производные (волосы, ногти, кожные железы);

б) эпителий слизистой оболочки носа, рта и заднего прохода;

в) нервная система и эпителий органов чувств.

2. Из внутреннего зародышевого листка, энтодермы, развивается эпителий слизистой большей части пищеварительного тракта со всеми принадлежащими сюда железистыми структурами, большей части дыхательных органов, а также эпителий щитовидной и зобной желез.

3. Из среднего зародышевого листка, мезодермы, развивается мускулатура скелета, мезотелий облочек серозных полостей с зачатками половых желез и почек.

33. Оплодотворение- процесс слияния мужской и женской гамет, приводящее к образованию зиготы. При оплодотворении взаимодействуют мужская и женская гаплоидные гаметы, при этом сливаются их ядра (пронуклеусы), объединяются хромосомы, и возникает первая диплоидная клетка нового организма - зигота. Начало оплодотворения - момент слияния мембран сперматозоида и яйцеклетки, окончание оплодотворения - момент объединения материала мужского и женского пронуклеусов.

Оплодотворение происходит в дистальном отделе маточной трубы и проходит 3 стадии.

I стадия - дистантное взаимодействие, включает в себя 3 механизма:

хемотаксис - направленное движение сперматозидов навстречу к яйцеклетке (гинигамоны 1,2);

реотаксис - движение сперматозоидов в половых путях против тока жидкости;

капацитация - усиление двигательной активности сперматозоидов, под воздействием факторов женского организма (рН, слизь и другие).

II стадия - контактное взаимодействие, за 1,5-2 ч сперматозоиды приближаются к яйцеклетке, окружают ее и приводят к вращательным движениям, со скоростью 4 оборота в минуту. Одновременно из акросомы сперматозоидов выделяются сперматозилины, которые разрыхляют оболочки яйцеклетки. В том месте, где оболочка яйцеклетки истончается максимально, происходит оплодотворение, оволемма выпячивается и головка сперматозоида проникает в цитоплазму яйцеклетки, занося с собой центриоли, но оставляя снаружи хвостик.

III стадия - проникновение, самый активный сперматозоид проникает головкой в яйцеклетку, сразу после этого в цитоплазме яйцеклетки образуется оболочка оплодотворения, которая препятствует полиспермии. Затем происходит слияние мужского и женского пронуклеусов, этот процесс носит название синкарион. Этот процесс (сингамия) и есть собственно оплодотворение, появляется диплоидная зигота (новый организм, пока одноклеточный).

Биологическое значение оплодотворения состоит в том, что при слиянии мужских и женских половых клеток, происходящих обычно из разных организмов, образуется новый организм, несущий признаки отца и матери. При образовании половых клеток в мейозе возникают гаметы с разным сочетанием хромосом, поэтому после оплодотворения новые организмы могут сочетать в себе признаки обоих родителей в самых различных комбинациях. В результате этого происходит колоссальное увеличение наследственного разнообразия организмов.

34. Дробле́ние— ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.

Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп.

Бластомеры делятся очень быстро (у дрозофилы — раз в 20 минут) и более или менее синхронно.

Интерфаза сокращена до S-фазы; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК.

Между делениями нет периода роста, так что общая масса зародыша не растёт.

По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1—2 делений, в это же время активируется собственный геном зародыша.

Различают пять типов бластул: целобластулу, амфибластулу, стерробластулу, дискобластулу и перибластулу. Целобластула образуется при полном равномерном дроблении из яйцеклеток гомолецитального типа (ланцетник). Бластодерма целобластулы состоит из одного ряда более или менее одинаковых бластомеров, внутри находится крупная полость – бластоцель.

Бластодерма амфибластулы состоит из нескольких рядов клеток. Бластодерма в анимальной части тоньше, чем в вегетативной. Бластоцель меньших размеров, чем у ланцетника, и смещена к анимальному полюсу. Такого типа бластула образуется при полном неравномерном дроблении и характерна для круглоротых и земноводных.

Стерробластула состоит из одного ряда крупных бластомеров, которые глубоко заходят в полость бластулы, бластоцель в связи с этим или очень малая, или отсутствует (некоторые членистоногие).

Дискобластула образуется при неполном дискоидальном дроблении. Бластоцель в виде узкой щели находится между зародышевым диском и желтком.

35.После образования бластулы или морулы в результате перемещения клеточного материала образуется двухслойный зародыш или гаструла (gaster – желудок). Процесс, который приводит к образованию гаструлы, называется гаструляцией. Характерной особенностью гаструляциеи эмбрионального развития является интенсивное перемещение клеток, в результате которого будущие зачатки тканей перемещаются в места, предназначенные для них в соответствии с планом структурной организации организма. В процессе гаструляции возникают клеточные слои, которые называются зародышевыми листками. Вначале образуется два зародышевых листка. Наружный из них получил название эктодермы (ectos – вне, derma – кожа), а внутренний – энтодермы (entos – внутри). У позвоночных животных в процессе гаструляции образуется и третий, средний зародышевый листок – мезодерма (mesos – средний). Мезодерма образуется всегда позже экто- и энтодермы, поэтому ее называют вторичным зародышевым листком, а экто- и энтодерму – первичными зародышевыми листками. Эти зародышевые листки вследствие дальнейшего развития дают начало эмбриональным зачаткам, из которых будут образовываться различные ткани и органы.

При гаструляции продолжаются изменения, начавшиеся на стадии бластулы, и поэтому разным типам бластул соответствуют и различные типы гаструляции. Переход из бластулы в гаструлу может осуществляться 4-мя основными способами: инвагинацией, иммиграцией, деляминацией и эпиболией.

36. Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.

В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.

В настоящее время окончательно не установлено, каким образом из одной клетки (зиготы), а в дальнейшем из одинаковых зародышевых листков образуются совершенно различные по морфологии и функции клетки, а из них – ткани (из эктодермы образуются эпителиальные ткани, роговые чешуйки, нервные клетки и клетки глии). Предположительно в данных превращениях играют ведущую роль генетические механизмы.

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

37. Критические периоды– это этапы перехода от одного типа функционирования или обмена веществ к другому, характеризующиеся высокой чувствительностью или малой резистентностью к действию разнообразных раздражителей.

В онтогенезе человека к критическим периодам относят:

оплодотворение;

имплантацию (7-8-е сутки эмбриогенеза);

развитие осевого комплекса зачатков органов и плацентацию (3-8-я недели);

развитие головного мозга (15-20-я недели);

формирование основных систем организма, в том числе половой (2024-я недели);

рождение;

период до 1 года;

половое созревание (11-16 лет).

Выделяют критические периоды для каждого органа в различные сроки (особенно в разные сроки беременности).

Тератогенные (греч. teras – урод, чудовище) факторы – это все воздействия, способные вызвать нарушения развития: аномалии, пороки, уродства.

Аномалии – это незначительные отклонения, не нарушающие функций органа (косолапость, шестипалость).

Пороки – это нарушения морфологии и функций органа средней степени, снижающие жизнеспособность (пороки сердца).

Уродства – это морфологические отклонения, уродующие организм, нарушающие функции и нередко несовместимые с жизнью (отсутствие или недоразвитие органа).

Наиболее сильными тератогенными факторами являются наркотики, алкоголь, талидомид (снотворное), недостаток кислорода, недостаток витаминов группы В, токсины паразитов, ионизирующие излучения и др.

38.Филогене́з, или Филоген́ия (др.-греч. φῦλον, phylon — племя, раса и др.-греч. γενετικός, genetikos — имеющий отношение к рождению) — историческое развитие организмов[1]. В биологии филогенез рассматривает развитие биологического вида во времени. Биологическая классификация основана на филогенезе, но методологически может отличаться от филогенетического представления организмов.

Филогенез рассматривает эволюцию в качестве процесса, в котором генетическая линия — организмы от предка к потомкам — разветвляется во времени, и её отдельные ветви могут приобретать те или иные изменения или исчезать в результате вымирания.

Эволюция не является простым повторением строения предков, а предполагает изменение при формировании органов и систем органов:

1. Ценогенезы – приспособление зародышей к среде обитания, которое утрачивается у взрослых особей (жабры у головастиков, провизорные органы у амниотов).

1. Филэмбриогенез – изменение развития, имеющее адаптивное направление.

* анаболия – надставки – добавление дополнительных стадий (диафрагма у млекопитающих, перья у птиц, появление изгибов позвоночника).

* девиации – отклонение – в процессе морфогенеза органа происходит изменение в последовательности стадий развития (у млекопитающих развитие сердца рекапитулирует стадию трубки, 2-х камерное, 3-х камерное сердце, но стадия формирования неполной перегородки у пресмыкающихся вытесняется формированием перегородки характерной для млекопитающих).

* архаллаксисы – отклонение онтогенеза в самом начале развития, биогенетический закон не выполняется (закладка волоса начинается с утолщения кожи)

* гетерохрония – разное время – изменение времени закладки структур.

* гетеротопия – разные места – изменение места закладки

1. Атавизмы – при нарушении эмбриогенеза взрослых особей могут появляться признаки встречающиеся у далеких предков.

Атавистический (анцестральный) порог – пороки развития, снижающие жизнеспособность и проявляются как морфологические аномалии.

Причины пороков развития:

* Недоразвитие органов (гиперплазия диафрагмы и расщепление твердого неба)

* Персистирование – сохранение эмбриональных структур (открытый Баталов проток, свищи пупка и шеи).

* Нарушение перемещения органов (тазовое положение почек, крипторхизм)