Соотношение между составляющими информационной системы

Основные составляющие корпоративных информационных систем

 

В составе корпоративных информационных систем можно выделить две относительно независимых составляющих:

компьютерную инфраструктуру организации, представляющую собой совокупность сетевой, телекоммуникационной, программной, информационной и организационной инфраструктур (данная составляющая обычно называется корпоративной сетью);

взаимосвязанные функциональные подсистемы, обеспечивающие решение задач организации и достижение ее целей.

Первая составляющая отражает системно‑техническую, структурную сторону любой информационной системы. По сути, это основа для интеграции функциональных подсистем, полностью определяющая свойства информационной системы, ее успешную эксплуатацию. Требования к компьютерной инфраструктуре едины и стандартизованы, а методы ее построения хорошо известны и многократно проверены на практике.

Вторая составляющая корпоративной информационной системы целиком относится к прикладной области и в значительной степени зависит от специфики задач и целей предприятия. Данная составляющая полностью базируется на компьютерной инфраструктуре предприятия и определяет прикладную функциональность информационной системы. Требования к функциональным подсистемам сложны и зачастую противоречивы, так как выдвигаются специалистами из различных прикладных областей. Однако в конечном счете именно эта составляющая более важна для функционирования организации, так как для нее, собственно, и строится компьютерная инфраструктура.

 

 

Взаимосвязи между двумя указанными составляющими информационной системы достаточно сложны. С одной стороны, эти две составляющие в определенном смысле независимы. Например, организация сети и протоколы, используемые для обмена данными между компьютерами, абсолютно не зависят от того, какие методы и программы планируется применять на предприятии для организации бухгалтерского учета.

С другой стороны, указанные составляющие в определенном смысле все же зависят друг от друга. Функциональные подсистемы в принципе не могут существовать без компьютерной инфраструктуры. В то же время компьютерная инфраструктура сама по себе достаточно ограничена, поскольку не обладает необходимой функциональностью. Невозможно эксплуатировать распределенную информационную систему при отсутствии сетевой инфраструктуры. Хотя, имея развитую инфраструктуру, можно предоставить сотрудникам организации ряд полезных общесистемных служб (например, электронную почту и доступ в Интернет), упрощающих работу и делающих ее более эффективной (в частности, за счет использования более развитых средств связи).

Таким образом, разработку информационной системы целесообразно начинать с построения компьютерной инфраструктуры (корпоративной сети) как наиболее важной составляющей, опирающейся на апробированные промышленные технологии и гарантированно реализуемой в разумные сроки в силу высокой степени определенности как в постановке задачи, так и в предлагаемых решениях.

 

Примечание.

Бессмысленно строить корпоративную сеть как некую самодостаточную систему, не принимая во внимание прикладную функциональность. Если в процессе создания системно‑технической инфраструктуры не проводить анализ и автоматизацию управленческих задач, то средства, инвестированные в разработку корпоративной сети, не дадут впоследствии реальной отдачи.

 

Корпоративная сеть создается на многие годы вперед, капитальные затраты на ее разработку и внедрение настолько велики, что практически исключают возможность полной или частичной переделки существующей сети.

Функциональные подсистемы, в отличие от корпоративной сети, изменчивы по своей природе, так как в предметной области деятельности организации постоянно происходят более или менее существенные изменения. Функциональность информационных систем сильно зависит от организационно‑управленческой структуры организации, ее функциональности, распределения функций, принятых в организации финансовых технологий и схем, существующей технологии документооборота и множества других факторов.

Разрабатывать и внедрять функциональные подсистемы можно постепенно. Например, сначала на наиболее важных и ответственных участках выполнять разработки, обеспечивающие прикладную функциональность системы (внедрять системы финансового учета, управления кадрами и т. п.), а затем распространять прикладные программные системы и на другие, первоначально менее значимые области управления предприятием.

 

Классификация информационных систем

 

Информационные системы классифицируются по разным признакам. Рассмотрим наиболее часто используемые способы классификации.

 

Классификация по масштабу

 

По масштабу информационные системы подразделяются на следующие группы (рис. 1.1):

• одиночные;

• групповые;

• корпоративные.

Рис. 1.1. Деление информационных систем по масштабу.

 

Одиночные информационные системы.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создаются с помощью так называемых настольных, или локальных, систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы.

Групповые информационные системы ориентированы на коллективное использование информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (называемые также SQL‑серверами) для рабочих групп. Существует довольно большое количество различных SQL‑серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать территориально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент‑сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server. Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз данных.

 

Классификация по сфере применения

 

По сфере применения информационные системы обычно подразделяются на четыре группы (рис. 1.2):

• системы обработки транзакций;

• системы поддержки принятия решений;

• информационно‑справочные системы;

• офисные информационные системы.

Рис. 1.2. Деление информационных систем по сфере применения.

 

Системы обработки транзакций, в свою очередь, по оперативности обработки данных разделяются на пакетные информационные системы и оперативные информационные системы. В информационных системах организационного управления преобладает режим оперативной обработки транзакций (OnLine Transaction Processing, OLTP), для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть. Для систем OLTP характерен регулярный (возможно, интенсивный) поток довольно простых транзакций, играющих роль заказов, платежей, запросов и т. п. Важными требованиями для них являются:

• высокая производительность обработки транзакций;

• гарантированная доставка информации при удаленном доступе к БД по телекоммуникациям.

Системы поддержки принятия решений (Decision Support System, DSS) представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических, по другим показателям.

Обширный класс информационно‑справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные системы получили в Интернете.

Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

 

Примечание.

Следует отметить, что приводимая классификация по сфере применения в достаточной степени условна. Крупные информационные системы очень часто обладают признаками всех перечисленных выше классов. Кроме того, корпоративные информационные системы масштаба предприятия обычно состоят из ряда подсистем, относящихся к различным сферам применения.

 

 

Классификация по способу организации

 

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы (рис. 1.3):

• системы на основе архитектуры файл‑сервер;

• системы на основе архитектуры клиент‑сервер;

• системы на основе многоуровневой архитектуры;

• системы на основе Интернет/интранет‑технологий.

Рис. 1.3. Деление информационных систем по способу организации.

 

В любой информационной системе можно выделить необходимые функциональные компоненты (табл. 1.1), которые помогают понять ограничения различных архитектур информационных систем. Рассмотрим более подробно особенности вариантов построения информационных приложений.

 

Таблица 1.1. Типовые функциональные компоненты информационной системы

Архитектура файл‑сервер.

В архитектуре файл‑сервер сетевое разделение компонентов диалога PS и PL отсутствует, а компьютер используется для функций отображения, что облегчает построение графического интерфейса. Файл‑сервер только извлекает данные из файлов, так что дополнительные пользователи и приложения лишь незначительно увеличивают нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Объектами разработки в файл‑серверном приложении являются компоненты приложения, определяющие логику диалога PL, а также логику обработки BL и управления данными DL. Разработанное приложение реализуется либо в виде законченного загрузочного модуля, либо в виде специального кода для интерпретации.

Однако такая архитектура имеет существенный недостаток: при выполнении некоторых запросов к базе данных клиенту могут передаваться большие объемы данных, загружая сеть и приводя к непредсказуемости времени реакции. Значительный сетевой трафик особенно сказывается при организации удаленного доступа к базам данных на файл‑сервере через низкоскоростные каналы связи. Одним из вариантов устранения данного недостатка является удаленное управление файл‑серверным приложением в сети. При этом в локальной сети размещается сервер приложений, совмещенный с телекоммуникационным сервером (обычно называемым сервером доступа), в среде которого выполняются обычные файл‑серверные приложения. Особенность состоит в том, что диалоговый ввод‑вывод поступает от удаленных клиентов через телекоммуникации. Приложения не должны быть слишком сложными, иначе велика вероятность перегрузки сервера, или же нужна очень мощная платформа для сервера приложений.

 

Примечание.

Одним из традиционных средств, на основе которых создаются файл‑серверные системы, являются локальные СУБД. Однако такие системы, как правило, не отвечают требованиям обеспечения целостности данных (в частности, они не поддерживают транзакции). Поэтому при их использовании задача обеспечения целостности данных возлагается на программы клиентов, что приводит к усложнению клиентских приложений. Тем не менее, эти инструменты привлекают своей простотой, удобством применения и доступностью. Поэтому файл‑серверные информационные системы до сих пор представляют интерес для малых рабочих групп и, более того, нередко используются в качестве информационных систем масштаба предприятия.

 

Архитектура клиент‑сервер.

Архитектура клиент‑сервер предназначена для разрешения проблем файл‑серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент‑сервер является наличие выделенных серверов баз данных, понимающих запросы на языке структурированных запросов (Structured Query Language, SQL) и выполняющих поиск, сортировку и агрегирование информации.

Отличительная черта серверов БД – наличие справочника данных, в котором записана структура БД, ограничения целостности данных, форматы и даже серверные процедуры обработки данных по вызову или по событиям в программе. Объектами разработки в таких приложениях помимо диалога и логики обработки являются, прежде всего, реляционная модель данных и связанный с ней набор SQL‑операторов для типовых запросов к базе данных.

Большинство конфигураций клиент‑сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет реализовать графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL) и логика (BL, DL) – на клиенте. В двухуровневом определении архитектуры клиент‑сервер используется именно этот вариант: приложение работает на клиенте, СУБД – на сервере (рис. 1.4).

Рис. 1.4. Классический вариант клиент‑серверной системы.

 

Поскольку эта схема предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, активно взаимодействующие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL‑запроса должны вернуться клиенту для обработки, потому что там реализована логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам.

Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия решений оформляется в виде хранимых процедур и выполняется на сервере БД.

Хранимая процедура – процедура с SQL‑операторами для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД. Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер.

Хранимые процедуры улучшают целостность приложений и БД, гарантируют актуальность коллективных операций и вычислений. Улучшается сопровождение таких процедур, а также безопасность (нет прямого доступа к данным).

 

Примечание.

Следует помнить, что перегрузка хранимых процедур прикладной логикой может перегрузить сервер, что приведет к потере производительности. Эта проблема особенно актуальна при разработке крупных информационных систем, в которых к серверу может одновременно обращаться большое количество клиентов. Поэтому в большинстве случаев следует принимать компромиссные решения: часть логики приложения размещать на стороне сервера, часть – на стороне клиента. Такие клиент‑серверные системы называются системами с разделенной логикой. Данная схема при удачном разделении логики позволяет получить более сбалансированную загрузку клиентов и сервера, но при этом затрудняется сопровождение приложений.

 

Создание архитектуры клиент‑сервер возможно и на основе многотерминальной системы. В этом случае в многозадачной среде сервера приложений выполняются программы пользователей, а клиентские узлы вырождены и представлены терминалами. Подобная схема информационной системы характерна для Unix.

В настоящее время архитектура клиент‑сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования возможностей сервера БД, разгрузки сети и обеспечения контроля целостности данных.

Двухуровневые схемы архитектуры клиент‑сервер могут привести к некоторым проблемам в сложных информационных приложениях с множеством пользователей и запутанной логикой. Решением этих проблем может стать применение многоуровневой архитектуры.

Многоуровневая архитектура.

Многоуровневая архитектура стала развитием архитектуры клиент‑сервер и в своей классической форме состоит из трех уровней:

• нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представлений PS и PL и имеющие программный интерфейс для вызова приложения на среднем уровне;

• средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL выполняет операции с базой данных DS;

• верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без использования хранимых процедур).

Подобную концепцию обработки данных пропагандируют, в частности, фирмы Oracle, Sun, Borland и др.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент‑сервер.

Централизация логики приложения упрощает администрирование и сопровождение. Четко разделяются платформы и инструменты для реализации интерфейса и прикладной логики, что позволяет с наибольшей отдачей реализовывать их специалистам узкого профиля. Наконец, изменения прикладной логики не затрагивают интерфейса, и наоборот. Но поскольку границы между компонентами PL, BL и DL размыты, прикладная логика может реализовываться на всех трех уровнях. Сервер приложений с помощью монитора транзакций обеспечивает интерфейс с клиентами и другими серверами, может управлять транзакциями и гарантировать целостность распределенной базы данных. Средства удаленного вызова процедур наиболее соответствуют идее распределенных вычислений: они обеспечивают из любого узла сети вызов прикладной процедуры, расположенной на другом узле, передачу параметров, удаленную обработку и возврат результатов.

С ростом систем клиент‑сервер необходимость трех уровней становится все более очевидной. Продукты для трехуровневой архитектуры, так называемые мониторы транзакций, являются относительно новыми. Эти инструменты в основном ориентированы на среду Unix, однако прикладные серверы можно строить на базе Microsoft Windows NT с вызовом удаленных процедур для организации связи клиентов с сервером приложений. На практике в локальной сети могут использоваться смешанные архитектуры (двухуровневые и трехуровневые) с одним и тем же сервером базы данных. С учетом глобальных связей архитектура может иметь больше трех уровней. В настоящее время появились новые инструментальные средства для гибкой сегментации приложений клиент‑сервер по различным узлам сети.

Таким образом, многоуровневая архитектура распределенных приложений позволяет повысить эффективность работы корпоративной информационной системы и оптимизировать распределение ее программно‑аппаратных ресурсов. Но пока на российском рынке по‑прежнему доминирует архитектура клиент‑сервер.

Интернет/интранет‑технологии.

В развитии Интернет/интранет‑технологий основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет‑технологий с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер – сервер приложений – сервер баз данных – сервер динамических страниц – веб‑сервер.

Благодаря интеграции Интернет/интранет‑технологий и архитектуры клиент‑сервер, процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.