Формула повної ймовірності.
Приклад 6. Нехай в одному із трьох ящиків знаходиться 3 білих і 2 чорних кулі, у другому - 2 білі й 3 чорних, у третьому - тільки білі кулі. З навмання обраного ящика витягають одну кулю. Знайти ймовірність того, що він білого кольору.
Позначимо через А подію, яка полягає в тому, що обрана куля білого кольору. Ймовірність цієї події залежить від того, з якого ящика обрана куля. Розглянемо події :
H- куля взята з першого ящика,
H - куля взята із другого ящика,
H- куля взята із третього ящика.
Події H, H
, H
- несумісні, тоді подія А можна представити у вигляді суми добутків
А= HА + H
А + H
А
Застосовуючи формули додавання й множення одержимо,
Р(А) = Р(HА + H
А + H
А ) = Р(H
А) + Р(H
А) + (H
А) =
Р(H)Р(А/ H
) + Р(H
)Р(А/ H
) + Р(H
)Р(А/ H
) =
Це і є формула повної ймовірності. Запишемо її в загальному виді. Нехай подія А може відбутися тільки разом з однією з подій H, H
, … , H
, які утворюють повну групу подій (гіпотез).
Ймовірність Р(А) визначається за формулою повної ймовірності
Р(А) =Р( H
)P(A/ H
), де
Р( H
) = 1.
Приклад 7. На двох автоматичних верстатах виготовляються однакові валики. Імовірність виготовлення валика вищого сорту на першому верстаті дорівнює 0,95 , а на другому - 0,80. Виготовлені на обох верстатах не розсортовані валики перебувають на складі, серед них валиків, виготовлених на першому верстаті, у три рази більше, ніж на другому. Визначити ймовірність того, що навмання взятий валик виявиться вищого сорту.
Позначимо А - подію, яка полягає у тому, що взятий навмання валик виявиться вищого
сорту;
B- подія, яка полягає у тому, що взятий навмання валик
зроблений на першому верстаті;
B- подія, яка полягає у тому, що валик зроблений на другому
верстаті.
Застосувавши формулу повної ймовірності одержимо:
Р(А) = Р(В)Р(А/ В
) + Р(В
)Р(А/ В
).
Оскільки валиків, зроблених на першому верстаті , в 3 рази більше, ніж на другому, то Р(В) =
, Р(В
) =
.
У задачі дані умовні ймовірності:
Р(А/ В) = 0,92 , Р(А/ В
) = 0,80.
Шукана ймовірність
Р(А) = = 0,89.
Формули Байеса.
В умовах Приклада 6, обрана з ящика куля, виявилася білого кольору. Знайти ймовірність того, що куля була взята із третього ящика.
Це задача відрізняється тим, що відома подія, яка наступила в результаті експерименту: Ця подія А – витягнута куля білого кольору. Потрібно знайти ймовірність гіпотези за умови, що наступила подія А, тобто Р(Н/А).
Розглянемо ймовірність Р(А Н) , за формулою множення
Р(А Н) = Р(А)Р(Н
/А) = Р(Н
)Р(А/ Н
).
З останньої рівності виразимо шукану ймовірність
Р(Н/А) =
,де Р(А) - повна ймовірність події А.
Отримана рівність і є формула Байеса для Н.Аналогічно можна одержати формули для гіпотез H
і H
.
Використовуючи результати Приклада 6 , одержимо
Р(Н/А) =
=
.
Запишемо формули Байеса в загальному виді :
Р(, Р(А) – повна ймовірність події А,
Р( H
) = 1, k =
.
Приклад 8. В умовах Приклада 7, взятий навмання валик виявився вищого сорту. Визначити ймовірність того, що він зроблений на першому верстаті.
Використовуючи позначення Приклада 7, за формулою Баейса одержимо:
Р(В/А) =
=
= 0,76.