Дискретные случайные величины
Виды случайных величин
Случайные величины и законы их распределения
В главе 17 рассматривались события, состоящие в появлении того или иного числа. Например, среди трех изъятых деталей может оказаться до трех стандартных.
Определение 1. Величину называют случайной, если в результате испытания она примет лишь одно возможное значение, заранее не известное и зависящее от случайных причин.
Каждой случайной величине соответствует множество чисел — это множество значений, которые она может принимать. Например, число мальчиков среди 100 новорожденных — это случайная величина, которая может принимать значения от 0 до 100. Далее будем обозначать случайные величины прописными буквами, а их возможные значения — строчными буквами; например, случайная величина Х имеет два возможных значения x1 и х2. Другой пример: случайная величина Y принимает возможные значения, принадлежащие интервалу (а, b). Различают два вида случайных величин.
Определение 2. Случайная величина, принимающая отдельные возможные значения с определенными вероятностями, называется дискретной случайной величиной.
Определение 3. Непрерывной называется случайная величина, которая может принимать все значения из некоторого промежутка.
Как следует из определения 2, для задания дискретной случайной величины нужно задать не только перечень ее возможных значений, но и их вероятности. Иными словами, каждому возможному значению случайной величины соответствует определенное значение вероятности появления этой величины.
Определение 4. Соответствие между отдельными возможными значениями и их вероятностями называется законом распределения дискретной случайной величины.
Как и в случае функциональной зависимости, этот закон можно задать таблицей, аналитически (формулой) и графически. В случае табличного задания закона распределения дискретной случайной величины соответствующая таблица состоит из двух строк — первая указывает возможные значения, а вторая — их вероятности:
Поскольку в одном испытании случайная величина принимает только одно возможное значение, то события Х = х1, Х = х2, …, Х = xп образуют полную группу, т.е. сумма их вероятностей равна единице:
Если множество возможных значений Х дискретной случайной величины бесконечно, то соответствующий ряд вероятностей сходится и его сумма равна единице:
Пример 1. В денежной лотерее на 100 билетов разыгрывается один выигрыш в 20 р., два выигрыша по 10 р. и 10 выигрышей по 1 р. Найти закон распределения случайной величины Х возможного выигрыша на один билет.
Решение. Возможные значения X: x1 = 20, x2 = 10, x3 = 1, x4 = 0. Соответственно их вероятности равны: p1 = 0,01, р2 = 0,02, р3 = 0,1, р4 = 1 - (p1 +p2 + р3) = 1 - 0,13 = 0,87. Таким образом, искомый закон распределения имеет вид
Пример 2. Партия из 8 изделий содержит 5 стандартных. Наудачу отбираются 3 изделия. Составить таблицу закона распределения числа стандартных изделий среди отобранных.
Решение. Случайная величина Х — число стандартных деталей среди отобранных — может принимать 4 возможных значения: 0, 1, 2 и 3. Вероятность нахождения k стандартных изделий среди трех отобранных определяется формулой
Варьируя значения k от 0 до 3, получаем искомое распределение:
Пример 3. Вероятностный прогноз для величины Х — процентного изменения стоимости акций по отношению к их текущему курсу в течение шести месяцев — дан в виде закона распределения:
Найти вероятность того, что покупка акций будет более выгодна, чем помещение денег на банковский депозит под 36% годовых.
Решение. Прирост суммы на банковском депозите при условии 3% в месяц составит через 6 месяцев [(l,03)6 - l]100% = 19,4%. Вероятность того, что покупка акций выгоднее банковского депозита, определяется суммой вероятностей, соответствующих более высокому росту курса акций:
Закон распределения дискретной случайной величины можно изобразить графически, соединив в прямоугольной системе координат ХОР точки (хi, рi) отрезками прямых. Так, на рис. 18.1 показан закон распределения из примера 3. Такая фигура называется многоугольником распределения.