Геометрический смысл уравнения первого порядка

 

Рассмотрим уравнение у' = f(x,y). Пусть у = φ(x) его решение, график которого представляет собой непрерыв­ную интегральную кривую, причем в каждой ее точке сущест­вует касательная. Из дифференциального уравнения следует, что угловой коэффициент касательной к интегральной кривой в каждой ее точке равен правой части этого уравнения. Сле­довательно, уравнение первого порядка задает угловой коэф­фициент у' касательной к интегральной кривой как функцию двух переменных. Если каждой точке (x, у) сопоставить отрезок, направленный под углом наклона α = arctg (f (x, y)) к оси Ох, то мы получим поле направлений данного уравнения. В этом и заключается геометрический смысл дифференциально­го уравнения первого порядка.

Поле направлений позволяет проанализировать решение дифференциального уравнения и даже приближенно построить интегральные кривые.

Пример 1. Построить поле направлений уравнения y' = x2 - y.

Решение. Нетрудно видеть, что правая часть этого урав­нения удовлетворяет условиям теоремы Коши единственности и существования решения при любых x и у, т.е. интегральные кривые заполняют всю плоскость Оху. Найдем линии, на ко­торых наклон направлений одинаков, — так называемые изоклины. Так, если у' = 0, то имеем x2 - у = 0, т.е. на параболе у = x2 касательные к интегральным кривым горизонтальны (короткие черточки на рис. 9.2). При у' = 1 имеем х2 — у = 1, т.е. касательные к интегральным кривым направлены под уг­лом 45° к оси Ох на параболе у = х2 - 1. Наконец, на параболе у = x2 + 1 угол наклона касательных равен 135°. По полю на­правлений можно приближенно восстановить ход интеграль­ных кривых (сплошные линии).