Понятие функции

 

Определение функциональной зависимости

Определение 1. Пусть Х и Y — некоторые числовые множес­тва и пусть каждому элементу x Х по какому-либо закону f поставлен в соответствие один элемент у Y. Тогда будем го­ворить, что определена функциональная зависимость у от x по закону у = f(x). При этом x называют независимой перемен­ной (или аргументом), у — зависимой переменной, множество Х — областью определения (существования) функции, мно­жество Yобластью значений (изменения) функции.

Кроме буквы f для обозначения функции используются и другие буквы, другими буквами может обозначаться также и независимая переменная. Примеры записи функций: у = у (x), y = F(x), y = g(x).

Если множество Y значений функции ограничено, то функ­ция называется ограниченной, в противном случае — неогра­ниченной.

 

Способы задания функций

 

Задать функцию — значит указать закон, по которому, со­гласно определению, каждому значению аргумента из области определения ставится в соответствие (вычисляется) значение зависимой переменной из области значений функции. Сущест­вуют три основных способа задания функций: табличный, ана­литический и графический.

1. Табличный способ. Этот способ имеет широкое при­менение в разных отраслях знаний и приложениях: ряды экспе­риментальных измерений, социологические опросы, таблицы бухгалтерской отчетности и банковской деятельности и т.п. Как правило, в таких таблицах по крайней мере одну из пе­ременных можно принять за независимую (например, время), тогда другие величины будут являться функциями от этого аргумента. По сути дела базы данных основаны на табличном способе задания, хранения и обработки информации, а значит, и на табличной форме функциональной зависимости.

2. Аналитический способ. Этот способ состоит в зада­нии связи между аргументом и функцией в виде формул. Сле­дует подчеркнуть, что функция может определяться и набором формул — на разных промежутках области определения функции используются разные формулы.

Приведем примеры аналитического задания функций.

Пример 1. у = х3. Эта функция задана на бесконечной пря­мой -< x < . Множество значений этой функции тоже бесконечная числовая прямая -< у < . Функция называ­ется кубической параболой (рис. 3.1).

 

Рис. 3.1

Пример 2. у = . Функция задана на отрезке [—1, 1], множество ее значений — отрезок [0, 1]. Это половина окруж­ности, лежащая в верхней полуплоскости (рис. 3.2).

 

Рис. 3.2

 

+1, если x > 0;

Пример 3. у = sign x = 0, если х = 0;

-1, если х < 0.

Термин sign происходит от латинского signum знак. Функ­ция задана на всем бесконечном промежутке (-,), а область ее значений состоит из трех чисел: —1, 0, 1 (рис. 3.3).

 

Рис. 3.3

Стрелки означают, что полупрямые не достигают точек ни оси ординат, так как при х = 0 значение функции определено по другому соответствию.

3. Графический способ. Здесь соответствие между аргу­ментом и функцией задается посредством графика. Этот спо­соб обычно используется в экспериментальных измерениях с употреблением самопишущих приборов (осциллографы, сейс­мографы и т.п.).

 

Область определения функции

 

Остановимся на процедуре нахождения области определе­ния функции.

1. В том случае, когда функция задана в аналитическом виде (посредством формулы)

 

(3.1)

 

и никаких ограничений или оговорок более не имеется, область ее определения устанавливается исходя из правил выполнения математических операций, входящих в формулу f в (3.1). Эти ограничения хорошо известны: подкоренное выражение в кор­не четной степени не может быть отрицательным, знаменатель дроби не может быть равным нулю, выражение под знаком ло­гарифма должно быть только

положительным, а также неко­торые другие. Приведем здесь два примера.

Пример 1.у = log2 (x2 — 5x + 6).

Область определения этой функции находится из условия x2 — 5x + 6 > 0. Поскольку x = 2 и x = 3 — корни квадратно­го трехчлена, стоящего под знаком логарифма, то это условие выполняется на двух полубесконечных интервалах: (-, 2) и (3, ). На рис. 3.4 выделена заштрихованная полоса, в которой график функции отсутствует.

Рис. 3.4

Пример 2. у = arcsin .

Область определения этой функции находится из совокуп­ности двух условий: аргумент под знаком arcsin не может быть по модулю больше единицы и знаменатель аргумента не дол­жен равняться нулю, т.е.

 

 

Двойное неравенство эквивалентно двум более простым нера­венствам: х + 2 ≥ 1 и х + 2 ≤ -1. Отсюда получаем, что область определения функции состоит из двух полубесконечных проме­жутков: (-, -3] и (-1, ). Запретная точка х = -2 сюда не попадает. В отличие от предыдущего примера концы полуин­терваловвходят в область определения функции.

2. Область определения функции задана вместе с функцией f(x).

Пример 3. у = 3x-4­­/3 + 2, 1 ≤ х ≤ 4.

 

3. Функция имеет определенный прикладной характер, и область ее существования определяется также и реальными значениями входящих параметров (например, задачи с физи­ческим смыслом).

Определение 2. Функция у = f(x) называется четной (сим­метрия относительно оси Оу), если для любых значений аргу­мента из области ее определения выполнено равенство

 

Определение 3. Функция у = f(x) называется нечетной (симметрия относительно начала координат О), если выпол­нено условие:

 

 

Например, функции у = х2 и у = cos x являются четными, а функции у = x3 и у = sin x— нечетными.

 

Приложения в экономике

 

Приведем примеры использования функций в области эко­номики.

1. Кривые спроса и предложения. Точка равнове­сия. Рассмотрим зависимости спроса D (demand) и предложе­ния S (supply) от цены на товар Р (price). Чем меньше цена, тем больше спрос при постоянной покупательной способности населения. Обычно зависимость D от Р имеет вид ниспадаю­щей кривой (рис. 3.5, а):

 

(3.2)

 

где а < 0. В свою очередь предложение растет с увеличением цены на товар, и потому зависимость S от Р имеет следующую характерную форму:

 

(3.3)

 

где b ≥ 1 (рис. 3.5, б). В формулах (3.2) и (3.3) с и d — так называемые экзогенные величины; они зависят от внешних причин (благосостояние общества, политическая обстановка и т.п.). Вполне понятно, что переменные, входящие в формулы (3.2) и (3.3), положительны, поэтому графики функций имеют смысл только в первой координатной четверти.

 

Рис. 3.5

 

Для экономики представляет интерес условие равновесия, т.е. когда спрос равен предложению; это условие дается урав­нением

 

 

и соответствует точке пересечения кривых D и S — это так называемая точка равновесия (рис. 3.6). Цена Ро, при которой выполнено условие (3.4), называется равновесной.

 

Рис. 3.6

 

При увеличении благосостояния населения, что соответ­ствует росту величины с в формуле (3.2), точка равновесия М смещается вправо, так как кривая D поднимается вверх; при этом цена на товар растет при неизменной кривой предло­жения S.

2. Паутинная модель рынка. Рассмотрим простейшую задачу поиска равновесной цены. Это одна из основных проб­лем рынка, означающая фактически торг между производите­лем и покупателем (рис. 3.7).

 

Рис. 3.7

Пусть сначала цену P1 называет производитель (в прос­тейшей схеме он же и продавец). Цена P1 на самом деле выше равновесной (естественно, всякий производитель стремится по­лучить максимум выгоды из своего производства). Покупатель оценивает спрос D1 при этой цене и определяет свою цену Р2, при которой этот спрос D1 равен предложению. Цена Р2 ниже равновесной (всякий покупатель стремится купить подешев­ле). В свою очередь производитель оценивает спрос D2, соот­ветствующий цене P2, и определяет свою цену Р3, при которой спрос равен предложению; эта цена выше равновесной. Процесс торга продолжается и при определенных условиях приводит к устойчивому приближению к равновесной цене, т.е. к "скручи­ванию" спирали. Если рассматривать последовательность чисел, состоящую из называемых в процессе торга цен, то она имеет своим пределом равновесную цену Р0: Pn = P0.