Числовые последовательности и операции над ними

Числовые последовательности

УПРАЖНЕНИЯ

 

Определить множества значений x, удовлетворяющих следую­щим условиям.

 

1.1.|х|<2.1.2. x2 ≤ 9.1.3. х2 > 25. 1.4. |x – 3| <1.1.5. (x2 + l) ≤ 17. 1.6 (x2 - 3)1.1.7. х - х2 > 0.

1.8. x2 – 2x + 7 > 0.1.9.x2 – 2x + 5 < 0.

Глава 2. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

 

Числовые последовательности представляют собой беско­нечные множества чисел. Примерами последовательностей мо­гут служить: последовательность всех членов бесконечной гео­метрической прогрессии, последовательность приближенных значений (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последова­тельности.

Определение 1. Если каждому числу n из натурального ряда чисел 1, 2, 3,..., п,... поставлено в соответствие вещественное число xп, то множество вещественных чисел

 

x1, x2, x3, …, xn, … (2.1)

 

называется числовой последовательностью, или просто после­довательностью. .

Числа х1, x2, x3, ..., xп, ... будем называть элемента­ми, или членами последовательности (2.1), символ xпоб­щим элементом, или членом последовательности, а число п — его номером. Сокращенно последовательность (2.1) будем обо­значать символом п}. Например, символ {1/n} обозначает последовательность чисел

 

.

 

Иными словами, под последовательностью можно понимать бесконечное множество занумерованных элементов или мно­жество пар чисел (п, xп), в которых первое число принимает последовательные значения 1, 2, 3, ... . Последовательность считается заданной, если указан способ получения любого ее элемента. Например, формула xп = -1 + (-1)n определяет последовательность 0, 2, 0, 2,... .

Геометрически последовательность изображается на число­вой оси в виде последовательности точек, координаты кото­рых равны соответствующим членам последовательности. На рис. 2.1 изображена последовательность {хп} = {1/n} на чи­словой прямой.

 

 

Понятие сходящейся последовательности

Определение 2. Число а называется пределом последова­тельности {xn}, если для любого положительного числа ε су­ществует такой номер N, что при всех п > N выполняется неравенство

 

(2.2)

 

Последовательность, имеющая предел, называется сходя­щейся. Если последовательность имеет своим пределом число а, то это записывается так:

 

 

Последовательность, не имеющая предела, называется рас­ходящейся.

Определение 3. Последовательность, имеющая своим преде­лом число а = 0, называется бесконечно малой последователь­ностью.

Замечание 1. Пусть последовательность {хп} имеет своим пределом число а. Тогда последовательность {αn}= {xn — a} есть бесконечно малая, т.е. любой элемент xп сходящейся последовательности, имеющей предел а, можно представить в виде

 

 

где αnэлемент бесконечно малой последовательности {αn}.

Замечание 2. Неравенство (2.2) эквивалентно неравен­ствам (см. свойство 4 модуля числа из п. 1.5)

 

 

 

Это означает, что при п > N все элементы последователь­ности {xn} находятся в ε-окрестности точки а (рис. 2.2), причем номер N определяется по величине ε.

Интересно дать геометрическую интерпретацию этого определения. Поскольку последовательность представляет со­бой бесконечное множество чисел, то если она сходится, в лю­бой ε-окрестности точки а на числовой прямой находится бес­конечное число точек — элементов этой последовательности, тогда как вне ε-окрестности остается конечное число элемен­тов. Поэтому предел последовательности часто называют точ­кой сгущения.

Замечание 3. Неограниченная последовательность не имеет конечного предела. Однако она может иметь бесконеч­ный предел, что записывается в следующем виде:

 

(2.3)

 

Если при этом начиная с некоторого номера все члены по­следовательности положительны (отрицательны), то пишут

 

 

Если {xn} — бесконечно малая последовательность, то {1/xп} — бесконечно большая последовательность, имеющая бесконечный предел в смысле (2.3), и наоборот.

Приведем примеры сходящихся и расходящихся последова­тельностей.

Пример 1. Показать, используя определение предела последовательности, что .

Решение. Возьмем любое число ε > 0. Так как

 

 

то чтобы выполнялось неравенство (2.2), достаточно решить неравенство 1 / (n + 1) < ε, откуда получаем n > (1 — ε) / ε. Доста­точно принять N = [(1 — ε)/ε] (целая часть числа (1 — ε)/ ε)* , чтобы неравенство |xп — 1| < ε выполнялосьпривсех п > N.

* Символ [a] означает целую часть числа а, т.е. наибольшее целое число, не превосходящееа. Например,[2] = 2, [2,5] = 2, [0,8] = 0, [-0, 5] = -1, [-23,7] = -24.

Пример 2. Показать, что последовательность {хп} = (-1)n, или -1, 1, -1, 1,... не имеет предела.

Решение. Действительно, какое бы число мы ни предпо­ложили в качестве предела: 1 или —1, при ε < 0,5 неравенство (2.2), определяющее предел последовательности, не удовлетво­ряется — вне ε -окрестности этих чисел остается бесконечное число элементов xп: все элементы с нечетными номерами рав­ны —1, элементы с четными номерами равны 1.

 

Основные свойства сходящихся последовательностей

 

Приведем основные свойства сходящихся последовательнос­тей, которые в курсе высшей математики сформулированы в виде теорем.

 

1. Если все элементы бесконечно малой последователь­ности {хп} равны одному и тому же числу с, то с = 0.

2. Сходящаяся последовательность имеет только один предел.

3. Сходящаяся последовательность ограничена.

4. Сумма (разность) сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел которой равен сумме (разности) пределов последо­вательностей {xп} и {yп}.

5. Произведение сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел ко­торой равен произведению пределов последовательностей {хп} и {уп}.

6. Частное двух сходящихся последовательностей {хп} и {уп} при условии, что предел последовательности {уп} отличен от нуля, есть сходящаяся последователь­ность, предел которой равен частному пределов после­довательностей {хп} и {yп}.

7. Если элементы сходящейся последовательности {хn} удовлетворяют неравенству xп ≥ b (хп ≤ b) начиная с некоторого номера, то и предел а этой последова­тельности удовлетворяет неравенству а ≥ b (а ≤ b).

8. Произведение бесконечно малой последовательности на ограниченную последовательность или на число есть бесконечно малая последовательность.

9. Произведение конечного числа бесконечно малых после­довательностей есть бесконечно малая последователь­ность.

 

Рассмотрим применение этих свойств на примерах.

Пример 3. Найти предел .

Решение. При n числитель и знаменатель дроби стремятся к бесконечности, т.е. применить сразу теорему о пределе частного нельзя, так как она предполагает сущест­вование конечных пределов последовательностей. Преобразу­ем данную последовательность, разделив числитель и знаме­натель на n2. Применяя затем теоремы о пределе частного, пределе суммы и снова пределе частного, последовательно на­ходим

 

Пример 4. Найти предел последовательности {xп} = при п .

Решение. Здесь, как и в предыдущем примере, числитель и знаменатель не имеют конечных пределов, и потому снача­ла необходимо выполнить соответствующие преобразования. Поделив числитель и знаменатель на n, получаем

 

 

Поскольку в числителе стоит произведение бесконечно малой последовательности на ограниченную последовательность,то в силу свойства 8 окончательно получаем

 

Пример 5. Найти предел последовательности {хп} = при п .

Решение. Здесь применить непосредственно теорему о пределе суммы (разности) последовательностей нельзя, так как не существует конечных пределов слагаемых в формуле для {хп}. Умножим и разделим формулу для {хn} на сопряженное выражение :

 

 

Число е

 

Рассмотрим последовательность {хп}, общий член которой выражается формулой

 

В курсе математического анализа доказывается, что эта последовательность монотонно возрастает и имеет предел. Этот предел называют числом е. Следовательно, по определе­нию

 

 

Число е играет большую роль в математике. Далее будет рассмотрен способ его вычисления с любой требуемой точнос­тью. Отметим здесь, что число е является иррациональным; его приближенное значение равно е = 2,7182818... .