Анализ в частотной (спектральной) области

Определить амплитудный спектр входного аналогового сигнала можно несколькими различными способами, например, с помо­щью нескольких полосовых фильтров или с помощью одного пе­рестраиваемого фильтра; возможно использование преобразова­ния Фурье, однозначно связывающего временное и частотное пред­ставления функции (сигнала).

Существует прямое и обратное преобразования Фурье (ПФ) для непрерывных (аналоговых) сигналов. Прямое ПФ позволяет, зная функцию сигнала x(t), определить его спектр S(f). Обратное ПФ, наоборот, дает возможность, зная спектр сигнала S(f),найти временное представление (функцию) самого сигнала x(t).

Понимая, что полноценное спектральное представление сиг­нала содержит амплитудный и фазовый спектры, здесь и далее бу­дем говорить только об амплитудном спектре.

Существует ПФ и для дискретных (цифровых) сигналов. При этом спектр сигнала также является дискретным (линейчатым). В совре­менных цифровых средствах анализа используется алгоритм ди­скретного преобразования Фурье (ДПФ) – Discret Fourier Transform (DFT), посредством которого массив зарегистрированных во временной области дискретных отсчетов сигнала преобразуется в дискретный спектр. К сожалению, практическая реализация ДПФ требует большого числа громоздких арифметических процедур. Если число отсчетов на интервале регистрации Трравно N, то число необходимых операций умножения и сложения в ДПФ равно N 2. Поскольку скорость работы микропроцессора (микропроцессоров), естественно, ограничена, то это может привести в некоторых при­менениях к проблемам с быстродействием.

Существует разновидность ДПФ – быстрое преобразование Фу­рье (БПФ) – Fast Fourier Transform (FFT). В этом алгоритме опре­деленным выбором числа отсчетов N быстродействие может быть обеспечено гораздо выше. Если выбрать число отсчетов N не случай­ным, а равным целой степени числа 2, то число требуемых проце­дур умножения и сложения может быть уменьшено до (N log2N). Выигрыш в скорости можно продемонстрировать таким примером. Если число зарегистрированных отсчетов N = 1024, то реализация обычного алгоритма ДПФ требует N 2 ≈ 106 процедур, а в случае применения БПФ это число N log2N = 1024×10 ≈ 104, т.е. примерно в 100 раз меньше и, следовательно, примерно в 100 раз быстрее будет осуществляться переход из временной области в частотную. Причем этот выигрыш возрастает по мере увеличения числа отсчетов N.

Так же как и при анализе во временной области, в спектраль­ном анализе существуют понятия режимов реального и нереального времени обработки.