Теоремы о конечных пределах
Теорема 1. Функция f(x) имеет конечный предел в точкетогда и только тогда, когда выполняется равенство: f(x)=А+a(x), где a(x) – бесконечно малая функция в точке
.
Доказательство этой теоремы вытекает из определения предела функции в точке и определения бесконечно малой функции в точке.
Теорема 2.Если существуют конечные пределы двух функций f(x) и g(x) в точке,то существует конечный предел суммы этих функций в точке
,равный сумме пределов этих функций.
Доказательство: Пусть , тогда по теореме 1 f(x)=А+a(x), где a(x)– бесконечно малая функция в точкеx0.
Пусть,, тогда по теореме 1 g(x)=B+β(x), где β(x) – бесконечно малая функция в точкеx0.Рассмотрим сумму этих функций: f(x) + g(x) = = A + a(x) +B + β(x) = (A+B) + a(x) + β(x), обозначим γ(x) = a(x) + β(x) -
бесконечно малая функция в точке x0(по свойству 1 бесконечно малых функций). Получим f(x)+g(x)=A+B+γ(x).
По теореме 1: .
Теорема доказана.
Теорема 3.Если существуют конечные пределы двух функций f(x) и g(x) в точке ,то существуетпредел произведения этих функций в точке
,равный произведению пределов этих функций.
Доказательство:Пусть=А, тогда по теореме 1: f(x)=А+a(x), где a(x) – бесконечно малая функция в точке
.Пусть
, тогда по теореме 1: g(x) = B + β(x), где β(x) – бесконечно малая функция в точке
.Рассмотрим произведение этих функций:
f(x) × g(x) = (А +a(x))(B + β(x)) = AB + B×a(x) + A×β(x) + a(x) ×β(x).
Обозначим: B×a(x) + Aβ(x) + a(x)β(x) = γ(x) – бесконечно малая функция в точке (посвойствам бесконечно малых функций). Получим: f(x)×g(x) = A×B + γ(x).
По теореме 1: .
Теорема доказана.
Теорема 4. Если существуют конечные пределы f(x) и g(x), причем , то существует предел частного этих функций
в точке
,равный частному пределов этих функций.
То есть: если существует =А и существует
, B≠0, то существует
.
(Доказать самостоятельно)
Теорема 5(о пределе трех функций)
Если существуют равные конечные пределы функций f(x) и g(x) в точке:
=
А
И при стремлении x к x0выполняется неравенство:
,
то существует .
Доказательство. Возьмем любое e > 0. Вычитая из всех частей двойного неравенства, данного в условии, число A, получим
(*)
Так как
,
то найдется такое d1, что для всех x ¹ x0, удовлетворяющих условию
,
будет верно неравенство
,
или, что, то же,
(*)
Аналогично для функции g(x) найдется такое d2, что для всех x ¹ x0, удовлетворяющих условию
будет верно неравенство
(*)
Из неравенств, отмеченных (*) следует, что
,
или, что, то же самое
Для всех x ¹ x0, удовлетворяющих условию , где d - меньшее из d1 и d2. Это означает, что
.
Теорема доказана.
6. Первый замечательный предел
Теорема 6.Предел функции в точке x = 0 существует и равен 1, то есть:
.
Доказательство:
1)Пусть x > 0 (x )
(1)
;
;
(x – в радианах)
Подставим в соотношение (1) полученные значения площадей:
,
,
Так как все части двойного неравенства положительные, можно переписать так:
Т.к. то по теореме 5:
.
2)Пусть x<0 (x )
(по доказанному в первом случае)
Следовательно, .
Теорема доказана.