Объектно-ориентированное программирование

Концепция модульного программирования

Концепцию модульного программирования можно сформулировать в виде нескольких понятий и положений:

§ Функциональная декомпозиция задачи - разбиение большой задачи на ряд более мелких, функционально самостоятельных подзадач - модулей. Модули связаны между собой только по входным и выходным данным.

§ Модуль - основа концепции модульного программирования. Каждый модуль в функциональной декомпозиции представляет собой "черный ящик" с одним входом и одним выходом. Модульный подход позволяет безболезненно производить модернизацию программы в процессе ее эксплуатации и облегчает ее сопровождение. Дополнительно модульный подход позволяет разрабатывать части программ одного проекта на разных языках программирования, после чего с помощью компоновочных средств объединять их в единый загрузочный модуль.

§ Реализуемые решения должны быть простыми и ясными. Если назначение модуля непонятно, то это говорит о том, что декомпозиция начальной или промежуточной задачи была проведена недостаточно качественно. В этом случае необходимо еще раз проанализировать задачу и, возможно, провести дополнительное разбиение на подзадачи. При наличии сложных мест в проекте их нужно подробнее документировать с помощью продуманной системы комментариев. Этот процесс нужно продолжать до тех пор, пока действительно не удастся добиться ясного понимания назначения всех модулей задачи и их оптимального сочетания.

§ Назначение всех переменных модуля должно быть описано с помощью комментариев по мере их определения.

По мере развития вычислительной техники создавались новые подходы, помогающие справляться с растущим усложнением программ. Использование структурного программирования при написании умеренно сложных программ принесло свои результаты, но оказывалось несостоятельным тогда, когда программа достигала определенной длины. Чтобы писать более сложные программы, были разработаны принципы объектно-ориентированного программирования (ООП).

ООП позволяет разложить проблему на составные части. В этом случае вся процедура упрощается, и появляется возможность оперировать с гораздо более объемными программами. Каждая составляющая становится самостоятельным объектом, содержащим свои собственные коды и данные, относящиеся к нему.

Объект - замкнутая независимая сущность, взаимодействующая с внешним миром через строго определенный интерфейс в виде принимаемых сообщений.

Объекты обладают определенным набором свойств, методов и способностью реагировать на события (нажатие кнопок мыши, интервалы времени и т.д.). В отличие от процедурного программирования, где порядок выполнения операторов программы определяется порядком их следования и командами управления, в ООП порядок выполнения процедур и функций определяется событиями.

Объекты с одинаковыми свойствами и поведением объединяются в классы. Программа на объектно-ориентированном языке представляет собой совокупность описаний классов. Классы, в свою очередь, представляют собой описания свойств и поведения составляющих их объектов. Свойства представляются другими, более простыми объектами. Поведение описывается обменивающимися сообщениями объектами.

Все языки ООП основаны на трех основополагающих концепциях:

Инкапсуляция - означает, что объекты скрывают детали своей работы. Инкапсуляция позволяет разработчику объекта изменять принципы его функционирования, не оказывая никакого влияния на пользователя объекта.

Наследование - означает, что новый объект можно определить на основе уже существующих объектов, при этом он будет содержать все свойства и методы родительского. Наследование полезно, когда требуется создать новый объект, обладающий дополнительными свойствами по сравнению со старым.

Полиморфизм - многие объекты могут иметь одноименные методы, которые могут выполнять разные действия для разных объектов. Например, оператор "+" для числовых величин выполняет сложение, а для текстовых - склеивание.

Языки программирования, их классификация

Любой алгоритм есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования — чем меньше детализация, тем выше уровень языка.

По этому критерию можно выделить следующие уровни языков программирования:

· машинные;

· машинно-оpиентиpованные (ассемблеpы);

· машинно-независимые (языки высокого уровня).

Машинные языки и машинно-ориентированные языки— это языки низкого уровня, требующие указания мелких деталей процесса обработки данных.

Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.

Языки высокого уровня делятся на:

· алгоритмические (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов;

· логические (Prolog, Lisp и др.), которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания.

· объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

Алгоритмический язык (как и любой другой язык) образуют три его составляющие: алфавит, синтаксис и семантика.

Алфавитэто фиксированный для данного языка набор основных символов, т.е. "букв алфавита", из которых должен состоять любой текст на этом языке — никакие другие символы в тексте не допускаются. Из символов алфавита формируются лексемы языка:

• константы;

• идентификаторы;

• знаки операций;

• ключевые (служебные, иначе зарезервированные) слова;

• разделители (знаки пунктуации).

Синтаксисэто правила построения фраз, позволяющие определить, правильно или неправильно написана та или иная фраза. Точнее говоря, синтаксис языкапредставляет собой набор правил, устанавливающих, какие комбинации символов являются осмысленными предложениями на этом языке.

Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций,семантикаустанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке.

Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу (конструкцию) и определяемые ею свойства программных объектов или процесса обработки данных.

Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия

Основными понятиями в алгоритмических языках обычно являются данные, имена, операции и выражения, операторы.