Розв’язання.

Розв’язання.

1. Розкладемо квадратний тричлен . Для цього розв’яжемо квадратне рівняння : . Нерівність запишемо у вигляді і застосуємо метод інтервалів.

2. – нулі функції (рис. 5.2).

3. Визначаємо знак нерівності на кожному інтервалі:

:нехай , тоді ;

:нехай , тоді ;

:нехай , тоді .

Виберемо проміжки зі знаком нерівності "-". Маємо .

Приклад5.10. Розв’язати нерівність.

1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.

 

Рис. 5.3

2. Визначаємо знак нерівності на інтервалі : візьмемо , тоді .

3. Подвійних точок нерівність не має. Тому скористаємося умовою зміни знака: – "+"; – "-"; – "+". Маємо .

Приклад 5.11.Розв’язати нерівність

Розв’язання. ОДЗ: . Відмітимо на числовій прямій точки , (нулі чисельника) і , (нулі знаменника). Нерівність записано в стандартному вигляді, тому праворуч від точки функція додатна. Усі показники степеня непарні, тому при переході через них знак лівої частини нерівності буде змінюватися (рис. 5.4). Маємо

Рис. 5. 4

 

Завдання для самостійної роботи

5.6. Розв’язати нерівності:

а); b) ; c);

d); e); f);

g); h);

i) ; j); k); l) .