В зоне проводимости
Равновесная концентрация электронов
В состоянии равновесия
Носители заряда в полупроводнике
Рассмотрим, каким образом может быть рассчитана равновесная концентрация электронов в зоне проводимости. Пусть Nn(E) – энергетическая плотность электронных состояний в зоне проводимости (с учетом спинов), приходящихся на единицу объема полупроводника. Согласно определению (см. п.1.1.4) произведение Nn(E)dE дает объёмную концентрацию электронных уровней с энергиями от E до E+dE. Если Nn(E)dE умножить на fon(E,T) – равновесная вероятность заполнения электронами уровней с энергией E при температуре T, то получим концентрацию электронов в зоне проводимости, энергии которых лежат в интервале от E до E+dE. Интегрируя по всем энергиям зоны проводимости, получим выражение для полной равновесной концентрации электронов no в зоне проводимости
. (1.2.1)
Для электронов – частиц с полуцелым спином, подчиняющихся принципу запрета Паули - fon(E,T) есть функция распределения Ферми - Дирака
, (1.2.2)
где k – постоянная Больцмана; Т – абсолютная температура; EF – так называемая энергия Ферми (уровень Ферми). Зависимость положения уровня Ферми от температуры и уровня легирования полупроводника мы обсудим в следующем параграфе, а пока что будем считать его положение заданным.
Рассмотрим так называемые невырожденные полупроводники, у которых уровень Ферми располагается в запрещенной зоне, и при заданной температуре Т отстоит от её краев не менее чем на (2÷3)∙kT. Для уровней зоны проводимости таких полупроводников выполняется неравенство >>1, поэтому для них выражение (1.2.2) для функции распределения может быть с достаточной точностью заменено более простой формулой
. (1.2.3)
Формула (1.2.3) показывает:
1. Электроны зоны проводимости невырожденного полупроводника фактически подчиняются статистике Больцмана: уровней много, электронов мало, конфликта между ними «на почве принципа Паули» не возникает, и они ведут себя почти как классические частицы.
2. Вероятность заполнения энергетических уровней зоны проводимости невырожденного полупроводника очень быстро убывает с ростом энергии.
Последнее обстоятельство означает, что основная часть свободных электронов располагается вблизи дна зоны проводимости. Это в сою очередь позволяет:
а) использовать для всей зоны проводимости в качестве Nn(E) выражение (1.1.2)
, (1.2.4)
описывающее энергетическую плотность электронных уровней вблизи дна зоны проводимости, приходящихся на единицу объёма полупроводника. (Напомним, в (1.2.4) mdn*- эффективная масса электрона для плотности состояний, h = 6,626∙10-34 Дж∙с – постоянная Планка);
б) устремить в (1.2.1) верхний предел интегрирования к бесконечности (EС max® ∞ ).
В итоге для расчёта равновесной концентрации электронов в зоне проводимости невырожденного полупроводника получим общую формулу вида
. (1.2.5)
В (1.2.5) использовано точное выражение (1.2.2) для функции распределения Ферми – Дирака и приближённое выражение (1.2.4) для плотности электронных состояний в зоне проводимости. В курсе физики твёрдого тела будет показано, что для невырожденного полупроводника интегрирование в (1.2.5) приводит к выражению
. (1.2.6)
Величину NС (см-3) называют эффективной плотностью электронных состояний в зоне проводимости и вычисляют по формуле
NС = =
= . (1.2.7)
Приведем некоторые числовые оценки: при T = 300K, m*dn » mo, где mo – масса свободного электрона, получаем NС = 2.5∙1019 см-3. По физическому смыслу величина NС близка к числу уровней зоны проводимости приходящихся на 1 см3 в интервале энергий от EС до EС + kT. Согласно (1.2.6) в невырожденном полупроводнике при T = 300K no << NС.