Наступлений события

Формула Бернулли. Наивероятнейшее число

Схема Бернулли. Предположим, что производится n независимых испытаний, в результате каждого из них может наступить некоторое событие с одной и той же вероятностью или не наступить с вероятность

Вероятность того, что событие произойдет m раз в n испытаниях, выражается формулой Бернулли:

(3.18)

где − число сочетаний из n элементов по m.

Пример 3.34. Вероятность попадания в цель при одном выстреле равна 0,6. Какова вероятность того, что 5 выстрелов дадут 2 попадания?

Используя формулу Бернулли (3.18) и учитывая, что и получим:

Определение. Число называется наивероятнейшим числом наступлений события A в испытаниях, если не меньше остальных значений т. е. при

Если и , то значение можно определить из двойного неравенства:

(3.19)

Разность граничных значений в неравенстве (3.19) равна единице. Если не является целым числом, то неравенство определяет лишь одно значение . Если же является целым числом, то неравенство определяет два наивероятнейших значения: и

Пример 3.35.В урне10 белых и 40 красных шаров. Вынимают наугад по одному 14 шаров, каждый раз возвращая вынутый шар в урну и тщательно перемешивая шары. Определить наивероятнейшее число появлений белого шара.

Из условия задачи следует, что а Используя неравенство (3.19), получим:

т. е.

Таким образом, задача имеет два решения: и

Пример 3.36. Вероятность попадания в цель при одном выстреле равна 0,7. Сделано 25 выстрелов. Определить наивероятнейшее число попаданий в цель.

Из условия задачи следует, что а Используя неравенство (3.19), получим:

т. е.

Задача имеет одно решение:

 

3.2.14. Локальная формула Муавра−Лапласа

В рамках схемы Бернулли при большом числе n независимых испытаний использовать формулу Бернулли нецелесообразно. В этих ситуациях используют локальную формулу МуавраЛапласа.

Локальная теорема Муавра−Лапласа. Вероятность того, что в n независимых испытаниях (чем больше n, тем точнее), в каждом из которых может наступить некоторое событие с одной и той же вероятностью или не наступить с вероятностью событие наступит m, приближенно равна:

(3.20)

где

Функция является четной, следовательно, Таблица значений функции для положительных значений аргумента приведена в приложении 1.

Формулу (3.20) называют локальной формулой МуавраЛапласа или локальной формулой Лапласа.

Пример 3.37. Найти вероятность того, что событие наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

По условию задачи и Так как значение велико, воспользуемся (3.20) локальной формулой МуавраЛапласа:

В таблице значений функции (приложение 1) найдем и подставим в (3.20). Искомая вероятность
Пример 3.38. Найти вероятность того, что событие наступит ровно 1400 раз в 2400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,6.

По условию задачи и Так как значение велико, воспользуемся (3.20) локальной формулой МуавраЛапласа:

Так как функция является четной, следовательно, В таблице значений функции (приложение 1) найдем и подставим в (3.20). Искомая вероятность

3.2.15. Интегральная формула Муавра−Лапласа

Интегральная теорема Муавра−Лапласа. Вероятность того, что в n независимых испытаниях (чем больше n, тем точнее), в каждом из которых может наступить некоторое событие с одной и той же вероятностью или не наступить с вероятностьсобытие наступит не менее и не более раз, приближенно равна:

(3.21)

где − функция Лапласа.

Функция является нечетной, следовательно, Таблица значений функции для положительных значений аргумента приведена в приложении 2.

Формулу (3.21) называют интегральной формулой МуавраЛапласа или интегральной формулой Лапласа.

Пример 3.39. Найти вероятность того, что событие наступит не менее 75 и не более 90 раз в 100 испытаниях, если вероятность появления этого события в каждом испытании равна 0,8.

По условию задачи и Так как значение велико, воспользуемся (3.21) интегральной формулой МуавраЛапласа:

Учитывая нечетность функции т. е. найдем в таблице значений (приложение 2) и подставим в (3.21). В результате получим: