Единице
Граничные значения почти всюду равны по модулю
Бесконечные функциональные произведения, равномерная сходимость. Бесконечные произведения Бляшке
Лекция 10
А. Произведение Бляшке
Если .., и бесконечное произведение
сходится для |z|< 1, то оно представляет некоторуюфункцию, аналитическую в единичном круге; она называется произведением Бляшке. Можно даже допустить равенство конечного числа чисел zn нулю - просто в этом случае множители, соответствующие заменяются на z.
Имеем
откуда
следовательно, рассматриваемое бесконечное произведение сходится при z = 0 тогда в только тогда, когда
Но если , то по той же только что найденной формуле
при |z|<1; поэтому бесконечное произведение сходится в {\z\ < 1}, если . Таким образом,
сходится в {|z|<1} тогда и только тогда, когда .
Пусть так что
сходится в {|z|< 1} и представляет функцию В(z), аналитическую в этом круге. Согласно элементарной теории функции комплексной переменной, из того, что каждый сомножитель произведения по модулю меньше 1 в {|z|< 1}, вытекает, что \В(z)\< 1 для |z\< 1.
Следовательно, для почти всех ζ, |ζ|=1, предельная функция B(ζ)=limB(z) при z →ζсуществует (теарема Фату).
Теорема.|В(еiθ)|=1 п. в.
Доказательство.
Без ограничения общности можно считать, что все точки zn отличны от нуля (в противном случае мы рассмотрели бы функцию B(z)/zk вместо В (z)). Тогда Теперь из того, что вытекает, что . (NB: для каждого п. Возьмём число r, 0<r< 1, не равное ни одной из величин |zn |. Тогда в силу простейшей разновидности формулы Йенсена
,
т. е.
или
Выберем и зафиксируем какое-нибудь число р, такое что , и возьмём r< 1 настолько блнзким к 1, чтобы при п=1,2, ,.., р все точки zn лежали в круге {\z\<r}. Тогда из предыдущего соотношения получим
или, если взять r < 1 достаточно близким к 1,
Это значит, что
поскольку число ɛ>0 было произвольным. Но В (reiθ) →В (еiθ) п. в. при r→1, и
Следовательно, по лемме Фату (переходим к пределу по последовательности чисел r, стремящихся к 1)
Поскольку , мы получаем, что