Единице

Граничные значения почти всюду равны по модулю

Бесконечные функциональные произведения, равномерная сходимость. Бесконечные произведения Бляшке

Лекция 10

 

А. Произведение Бляшке

Если .., и бесконечное произведение

сходится для |z|< 1, то оно представляет некоторуюфунк­цию, аналитическую в единичном круге; она называется про­изведением Бляшке. Можно даже допустить равенство конечного числа чисел zn нулю - просто в этом случае множители, соответствующие заменяются на z.

Имеем

откуда

следовательно, рассматриваемое бесконечное произведение сходится при z = 0 тогда в только тогда, когда

Но если , то по той же только что най­денной формуле

при |z|<1; поэтому бесконечное произведение сходится в {\z\ < 1}, если . Таким образом,

сходится в {|z|<1} тогда и только тогда, когда .

Пусть так что

сходится в {|z|< 1} и представляет функцию В(z), аналитическую в этом круге. Согласно элементарной теории функции комплексной переменной, из того, что каждый сомножитель произведения по модулю меньше 1 в {|z|< 1}, вытекает, что \В(z)\< 1 для |z\< 1.

Следовательно, для почти всех ζ, |ζ|=1, предельная функция B(ζ)=limB(z) при z →ζсуществует (теарема Фату).

Теорема.|В(е)|=1 п. в.

Доказательство.

Без ограничения общности можно счи­тать, что все точки zn отличны от нуля (в противном случае мы рассмотрели бы функцию B(z)/zk вместо В (z)). Тогда Теперь из того, что вытекает, что . (NB: для каждого п. Возьмём число r, 0<r< 1, не равное ни одной из величин |zn |. Тогда в силу простейшей разновидности фор­мулы Йенсена

,

т. е.

или

Выберем и зафиксируем какое-нибудь число р, такое что , и возьмём r< 1 настолько блнзким к 1, чтобы при п=1,2, ,.., р все точки zn лежали в круге {\z\<r}. Тогда из предыдущего соотношения получим

или, если взять r < 1 достаточно близким к 1,

Это значит, что

поскольку число ɛ>0 было произвольным. Но В (re) →В (е) п. в. при r→1, и

Следовательно, по лемме Фату (переходим к пределу по последовательности чисел r, стремящихся к 1)

Поскольку , мы получаем, что