Прогнозирование рождаемости
Наиболее сложным и интересным в творческом отношении этапом прогнозирования рождаемости является прогнозирование или общего уровня рождаемости (обычно в терминах ее суммарного коэффициента), или ее повозрастных коэффициентов. Именно на этом этапе решающую роль приобретают теоретические концепции демографа-прогнозиста, понимание им сути тех изменений, которые происходят с рождаемостью, и сил, ихвызывающих. В настоящее время для прогнозирования общего уровня рождаемости применяются различные методы, начиная от простой экстраполяции ее тенденций в будущее, до попыток разработки и применения математических моделей, учитывающих взаимосвязь уровня рождаемости и социально-экономических факторов, ее определяющих.
Последнее, вероятно, было бы идеальным решением задачи прогнозирования рождаемости. В этом случае прогнозные значения социально-экономических факторов выступали бы в качестве входных параметров прогноза, на выходе которого получались бы значения суммарного и повозрастных коэффициентов рождаемости. К сожалению, задача создания подобных математических моделей не решена до сих пор из-за ее невероятной сложности и необходимости использования огромных информационных и вычислительных ресурсов. Одним из возможных подходов к решению подобного рода задач является применение метода множественной регрессии. Суть этого подхода состоит в том, что на основании многолетних данных о величинах рождаемости и ряда социально-экономических показателей (напр., душевого дохода доли занятых среди женщин, душевого дохода среди женщин, коэффициента брачности, распространенности применения контрацепции и т.д. и т.п.) строится уравнение множественной регрессии, связывающее значения рождаемости с уровнями перечисленных факторов27.
Большинство прогнозов рождаемости, однако, выполняется с помощью более доступных и менее дорогостоящих методов.
Самым простым методом является экстраполяция тенденций суммарного коэффициента рождаемости на будущее с помощью той или иной математической функции, например, той же логистической кривой. Именно эту функцию часто применяют для прогнозирования рождаемости в развивающихся странах, в которых наблюдается переход от высокой рождаемости к низкой. Основанием для применения логистической функции в этом случае являются долговременные статистические динамические ряды рождаемости, характеризующие ее снижение в тех странах, где она уже достигла низких уровней. Это снижение с высокого уровня до низкого лучше всего описывается именно логистической кривой. В качестве примера можно привести график, показывающий, как происходило снижение рождаемости на Тайване в период с 1958 по 1987 г. (график 8.1). Определив тренд суммарного коэффициента рождаемости, его продлевают в будущее. Затем с помощью стандартных таблиц рождаемости рассчитывают ее повозрастные коэффициенты, соответствующие полученным прогнозным значениям суммарных коэффициентов, тем самым задавая входные параметры для прогнозирования численности и структуры населения с помощью метода компонент (передвижки возрастов). Метод экстраполяции обычно применяется для прогнозирования рождаемости в странах с высоким ее уровнем.
Другим методом прогнозирования повозрастных коэффициентов рождаемости является референтный метод (реализуемый, главным образом, путем сравнения с более «продвинутыми» населениями. С технической точки зрения применение этого метода для прогнозирования рождаемости аналогично тому, что сказано выше о прогнозировании смертности. Единственное, что стоит сказать, - это то, что сравнение прогнозируемого населения производится не столько с уровнями повозрастных или суммарных коэффициентов рождаемости «продвинутых» населений, сколько с распространенностью и особенностями практики применения средств контрацепции и искусственного прерывания беременности28.
В современных условиях все большую роль в прогнозировании рождаемости играют данные специальных статистических обследований и социологических опросов, целью которых является выявление репродуктивных намерений и ориентации населения. Выше уже шла речь о подобного рода исследованиях и их роли в изучении рождаемости и воспроизводства населения в целом. Результаты этих исследований используются и