Гармонические колебания

Пример определения равновесия системы и исследование на устойчивость. Определение критериев устойчивости

 

Дано: ОА=ОВ= ; с – коэффициент жесткости пружины, -длина нерастянутой пружины .

 

Потенциальная энергия системы равна

П=П12=

Удлинение пружины составляет

=…..=

Потенциальная энергия системы равна

П=

Т.к. равновесие в системе будет при условии

= 0

очевидно, что равенство справедливо в двух случаях:

1)

2) откуда:

Эти равновесные положения исследуем на устойчивость:

1) при откуда:

2) при откуда

 

 

Потенциальная и кинетическая энергия системы в обобщенных координатах

Для системы с s-степенью свободы потенциальная энергия, есть функция обобщенных координат

 

Разложим ее в ряд Маклорена по степеням q:

П(q1….q5)=П(0)+

Учитывая, что

то

или сокращенно

,

где с - обобщенный коэффициент жесткости системы или квазирующий коэфициент.

Аналогично, рассматривая кинетическую энергию системы, получаем:

,

где а - обобщенный коэффициент инерции системы.

Рассмотрим движение системы, которое возможно относительно равновесного положения, т.е. составим дифференциальное уравнение движения:

если

; П=,

то по уравнению

Правая часть уравнения Лагранжа:

; тогда

или

(1)

Уравнение (1) - уравнение свободных или гармоничных колебаний.

характеризует циклическую частоту собственных колебаний системы, которые зависят от жесткости системы с и инерционности.

(2)

или

, (3)

где А – амплитуда.

При t=0:

 

Получаем уравнение амплитуды:

Период колебаний равен

Независимость периода от амплитуды – изохронность колебаний.

Пример: Найти частоту собственных колебаний балки.

А=;

=

П =

Подставим П и Т,

или

где с - жесткость рессора.