Расчет по кратностям.

В нормативном документе, СНиП 31-01-2003: Здания жилые многоквартирные, Таблица 9.1 «Жилые здания» есть таблица с приведенными кратностями по помещениям (табл.1).

Таблица 1. Кратности воздухообмена в помещениях жилых зданий.
Помещения Расчетная температура зимой, С Требования к воздухообмену
Приток Вытяжка
Общая комната, спальня, кабинет 1-кратный --
Кухня - ≥90  
Кухня-столовая 1-кратный  
Ванная - ≥25  
Уборная - ≥50  
Совмещенный санузел - ≥50  
Помещение для стиральной машины в квартире - 0,5-кратный    
Гардеробная для чистки и глажения одежды - 1,5-кратный    
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры - -    
             

Кратность воздухообмена - это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 кранный воздухообмен – половину объема помещения. В этой таблице в двух последних колонках указаны кратности и требования к воздухообмену в помещениях по притоку и вытяжке воздуха соответственно. Итак, формула расчета вентиляции, включающая нужное количество воздуха выглядит так:

L=n*V 3/час) , где

n – нормируемая кратность воздухообмена, час-1;

V – объём помещения, м3.

Когда мы считаем воздухообмен для группы помещений в пределах одного здания (к примеру, жилая квартира) или для здания в целом (коттедж), их нужно рассматривать как единый воздушный объём. Этот объём должен отвечать условию ∑ Lпр = ∑ Lвыт То есть, какое количество воздуха мы подаём, такое же должны и удалить.

Таким образом, последовательность расчета вентиляции по кратностям следующая:

1. Считаем объем каждого помещения в доме (объем=высота*длина*ширина).

2. Подсчитываем для каждого помещения кратность по формуле: L=n*V.

Для этого предварительно выбираем из таблицы 1 норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.

Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры.

Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3.

Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.

3. Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт

4. Составляем уравнение баланса ∑ Lпр = ∑ Lвыт.

Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.

Рассмотрим расчеты на примерах.

Пример 1. Расчет по кратностям.

Есть дом площадью 114 м2 с помещениями: кухня (s1=20 м2), спальня (s2=24 м2), кабинет (s3=16 м2), гостиная (s4=40 м2), коридор (s5=8 м2), санузел (s6=2 м2), ванная (s7=4 м2), высота потолков h=3,5м. Нужно составить воздушный баланс дома.

1. Находим объёмы помещений по формуле V=sn*h, они составят V1=70 м3, V2=84 м3, V3=56 м3, V4=140 м3, V5=28 м3, V6=7 м3, V7=14 м3.

2. Теперь посчитаем нужное количество воздуха по кратностям (формула L=n*V) и запишем в таблицу, предварительно округлив единичную часть до пяти в большую сторону. При расчете кратность n берем с таблицы 1, получаем следующие значения нужного количества воздуха L:

Таблица 2.

Помещения Lпр, м3/час Lвыт, м3/час
Кухня - ≥ 90
Спальня -
Кабинет -
Гостиная -
Коридор - -
Санузел - ≥ 50
Ванная - ≥ 25
∑ Lпр Lвыт

Гостиная.В таблице 1 нет позиции, которая регламентировала бы кратность воздухообмена в помещении Гостиной. Поэтому норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем по формуле: L=Sпомещения*3.

Таким образом, Lпр.гостинная= Sгостинная*3=40*3=120 м3/час.

3. Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка.

∑ Lприт=85+60+120=265 м3/час

∑ Lвыт= 90+50+25=165 м3/час

4. Составим уравнение воздушного баланса. Как видим

∑ Lприт > ∑ Lвыт, поэтому увеличиваем значение Lвыт того помещения, где мы взяли значение воздухообмена равным минимально допустимому. У нас такие все три помещения (кухня, су, ванная). Увеличим Lвыт для кухни до значения L выт кухн=190. Таким образом, суммарное ∑ Lвыт=265м3/час. Условие таблицы 1 (табл 9.1) выполнено. ∑ Lпр = ∑ Lвыт.

Нужно заметить, что в помещениях ванны, санузла и кухни мы организовываем только вытяжку, без притока, а в помещениях спальни, кабинета и гостиной только приток. Это для предотвращения перетекания вредностей в виде неприятных запахов в жилые помещения. Также, это видно по таблице 1, в ячейках притока напротив этих помещений стоят прочерки.

Пример 2. Расчет по санитарным нормам.

Условия остаются прежние. Только добавим информацию, что в доме живут 2 человека, и проведем расчет по санитарным нормам.

Напомню, что по санитарным нормам на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.

Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество постоянных и временных людей, определяется техническим заданием заказчика) L4=2*60+2*20=160 м3/час, запишем полученные данные в таблицу.

Таблица 3
Помещение Lпр, м3/час Lвыт, м3/час
Кухня - ≥ 90
Спальня -
Кабинет -
Гостиная -
Коридор - -
Санузел - ≥ 50
Ванная - ≥ 25

Составив уравнение воздушных балансов

∑ Lпр = ∑ Lвыт:165<360 м3/час, видим, что количество приточного воздуха превышает вытяжной на ∆L=195 м3/час. Поэтому количество вытяжного воздуха необходимо увеличить на 195 м3/час. Его можно равномерно распределить между кухней, санузлом и ванной, а можно подать в одно из этих трех помещений, например кухню. Т.е. в таблице изменится Lвыт.кухня и составит Lвыт.кухня=285 м3/час. Из спальни, кабинета и гостинной воздух будет перетекать в ванную, санузел и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги.

Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 360=360 м3/час - выполняется.

Пример 3. Расчет по площади помещения.

Данный расчет сделаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен по формуле: ∑ L= ∑ Lпр= ∑ Lвыт =∑ Sпомещения*3.

∑ Lвыт 3=114*3=342м3/час.

Сравнение расчетов.

Как мы видим варианты расчетов отличаются количеством воздуха

(∑ Lвыт1=265 м3/час < ∑ Lвыт3=342 м3/час < ∑ Lвыт2=360 м3/час). Все три варианта являются правильными согласно норм. Однако, первый третий более простые и дешевые в реализации, а второй немного дороже, но создает более комфортные условия для человека. Как правило, при проектировании выбор варианта расчета зависит от желания заказчика, точнее от его бюджета.

Раздел 4. Основы газоснабжения.

Газ – источник энергии, необходимый человеку в быту и на производстве.

Преимущества:

· возможность транспортирования газа по газопроводам на большие расстояния;

· отсутствие складских помещений для хранения топлива на месте потребления;

· отсутствие шлака и золы после сгорания;

· уменьшение задымленности городов;

· высокий КПД газового оборудования;

· низкая себестоимость (по сравнению с мазутом и углем);

· экономичность (расход газа для удовлетворения бытовых нужд в 4 – 5 раз меньше, чем твердого или жидкого топлива).

Для газоснабжения применяют:

· природные газы, которые получают из газовых или нефтяных скважин

(газ под давлением /внутрипластового давления/ выходит из скважины на поверхность, и после обработки подается потребителю);

· искусственные газы – получают в процессе термической переработки твердого и жидкого топлива или как вторичный продукт некоторых производств (переработка антрацитов в кокс, доменный процесс);

· сжиженные газы – смесь углеводородов (пропан, пропилен, бутан, бутилен), переходящих при небольшом давлении и пониженной температуре в жидкое состояние, а при нормальных условиях снова превращающихся в газ.

Для централизованного снабжения населенных пунктов и производственных объектов в основном используют природные газы.

В населенных пунктах удаленных от магистралей использую сжиженные газы, которые, храня в баллонах и металлических резервуарах. В стальных баллонах сжиженный газ находится под давлением 0,6 МПа. Для подачи в бытовые приборы давление снижают до 0,003 МПа. В виду высокого давления и большой удельной теплоты сгорания сжиженного газа в газовых горелках устанавливают особые форсунки.

Для обеспечения необходимого эффекта и безопасности работы бытовых приборов качество газа должно быть постоянным, отвечать требованиям ГОСТов.

Нормы расхода газа зависят от оборудования квартиры, климатических условий, уровня развития коммунально-бытового обслуживания.

Наряду с полезными свойствами газового топлива применение газа представляет определенную опасность, так как смесь газа с воздухом взрывоопасна и токсична.

При проектировании, строительстве и эксплуатации газовых систем и оборудования следует обеспечивать полноту сгорания, отвод продуктов сгорания наружу и не допускать утечку газа в помещение.

Одним из важнейших требований к газу, применяемому в коммунальном хозяйстве, является наличие запаха для своевременного его обнаружения и предотвращения отравления и взрыва. Обязательно выполняют одоризацию, т.е. добавку к газу одоранта, в таком количестве, чтобы при минимальной концентрации газа в воздухе ощущался резкий запах.

Газоснабжение городов обычно предусматривает получение газа, его транспортирование под давлением, создание резервных и регулирующих (газгольдеров) емкостей, строительство станций перекачки и регулирования давления, а также строительство газовых сетей для транспортирования газа к местам потребления.

Газопроводные сети подразделяются на наружные, прокладываемые вдоль улиц и внутренние, состоящие из внутриквартальных сетей и сетей внутри здания. В зависимости от давления газа сети бывают:

· низкого давления (до 0,005 МПа) используют для гражданских зданий;

· среднего давления (0,005 – 0,3 МПа) используют для производственных предприятий;

· высокого давления 1 категории (0,6 – 1,2 МПа) для работы ТЭЦ. ГРЭС и промышленных объектов большой мощности;

· высокого давления 2 категории (0,3 – 0,6 МПа) используют для производственных предприятий;

· газовоздушных смесей (давлением до 1,6 МПа).

Для нормальной работы газовых приборов необходимо давление газа 0,0018 – 0,002 МПа, поэтому на сети давлением более 0,005 МПа устанавливают регуляторы давления (редукторы), поддерживающие давление не выше нормы.

При создании системы газоснабжения используют кольцевые, тупиковые и смешанные схемы построения распределительных газопроводов.

На выбор системы газоснабжения влияют:

· характер застройки;

· планировка;

· размеры населенного пункта;

· плотность населения;

· качество, характер и размещение промпредприятий, электростанций и других ответственных объектов.

По материалу труб газопроводы подразделяют на металлические (стальные) и неметаллические (полиэтиленовые, пластмассовые, резинотканевые).

Газовые сети прокладывают в земле в соответствии с требованиями СНиП 2.05.06 -85 и «Правил безопасности в газовом хозяйстве». При транспортировании неосушенного (влажного) газа трубы укладывают ниже границы промерзания грунта. Min глубина заложения газопроводов 0.6 – 0.8 м.