НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

Предохранитель – коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция производится вручную либо автоматически. В последнем случае заменяется весь предохранитель.

Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили очень широкое их применение. Предохранители низкого напряжения изготовляются на токи от миллиампер до тысяч ампер и на напряжение до 660 В, а предохранители высокого напряжения – до 35 кВ и выше.

Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь; плавкую вставку; контактное присоединительное устройство; дугогасительное устройство или дугогасительную среду.

Важнейшей характеристикой предохранителя является зависимость времени перегорания плавкой вставки от тока – время-токовая характеристика (рис. 15-1).


Рис. 15-1. Время-токовая характеристика предохранителей серии ПН-2

Работа предохранителя протекает в двух резко отличных режимах: в нор­мальных условиях и в условиях перегрузок и коротких замыканий. В первом случае нагрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом, кроме вставки, нагреваются до установившейся температуры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки Iном. Он может быть отличным от номинального тока самого предохранителя. Обычно в один и тот же предохранитель можно вставлять плавкие вставки на различные номинальные токи. Номинальный ток предохранителя, указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.

При увеличении тока нагрузки увеличивается температура вставки и других деталей предохранителя. Наибольший ток, при котором вставка не перегорает в течение длительного времени, называется плавящим током I. Его значение зависит от многих факторов: от размеров сечения вставки, ее формы, материала и длины, от конструкции предохранителя, окружающей температуры и др. Значение плавящего тока обычно нормируется. При калибровке задаются минимальный ток, например I∞min = (1,3 ÷ 1,4)Iном, при котором плавкая вставка не должна перегореть в течение 1 – 2 ч, и максимальный ток, например I∞max = 1,6 Iном, при котором вставка должна расплавиться за время до 2 ч. При токах, превышающих ток плавления: I > I, плавкая вставка должна перегореть в кратчайшее время. Чтобы достигнуть резкого сокращения времени плавления вставки с ростом тока, идут по двум направлениям: 1) придают плавкой вставке специальную форму; 2) используют металлургический эффект.


Рис. 15-2. Распределение температур (а) и места перегорания фигурных плавких вставок при пергрузках (б) и при коротких замыканиях (в)

Вставку выполняют в виде пластинки с вырезами (рис. 15-2, а), уменьшающими ее сечение на отдельных участках. На этих суженных участках выделяется больше теплоты, чем на широких. При номинальном токе избыточная теплота вследствие теплопроводности материала вставки успевает распространиться к более широким частям, и вся вставка имеет практически одну температуру. При перегрузках (I ≈ I∞max) нагрев суженных участков идет быстрее, так как только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис. 15-2, б). При коротком, замыкании (I>>I) нагрев суженных участков идет настолько интенсивно, то практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или в нескольких суженных местах (рис. 15-2, в).


Рис. 15-3. Примеры форм плавких вставок с ускоренным их разрывом

Во многих конструкциях плавкой вставке 1 придается такая форма (рис.15-3, а), при которой электродинамические силы F, возникающие при токах короткого замыкания, разрывают вставку еще до того, как она успевает расплавиться. На рисунке место разрыва обозначено кружком. Этот участок выполняется меньшего сечения. При токах перегрузки электродинамические силы малы и плавкая вставка плавится в суженном месте. В конструкции, показанной на рис. 15-3, б, ускорение отключения цепе при перегрузках и коротких замыканиях достигается за счет пружины 2, разрывающей вставку 1 при размягчении металла на суженных участках до того, как происходит плавление этих участков.

Металлургический эффект заключается а том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Полученный таким образом раствор обладает иными характеристиками, чем исходные материалы (например, большим электрическим сопротивлением и пониженной температурой плавления). Указанное явление используется в предохранителях с вставками из ряда параллельных проволок.

Для ускорения плавления вставки при перегрузках и снижения общей температуры всей вставки при ее плавлении на проволоки напаиваются небольшие оловянные шарики. При токах перегрузки, когда температура вставки достигает температуры плавления олова, шарик расплавляется и растворяет часть металла, на котором он напаян. Происходят местное увеличение сопротивления вставки и снижение температуры плавления металла в этом месте. Вставка перегорает в том месте, где был наплавлен шарик. При этом температура всей" вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В номинальном режиме шарик практически не влияет на температуру нагрева вставки.

Этот способ получения требуемой время-токовой характеристики может применяться при тонких вставках, например при диаметре шарика 1 мм для проволок диаметром 0,3мм и диаметре шарика до 2 мм при более толстых проволоках. При возрастании диаметра вставки влияние металлургического эффекта резко снижается и практически не сказывается.

Рассмотренные способы ускорения перегорания вставки при токах перегрузки: и коротких замыканиях приводят к одному весьма существенному достоинству плавких предохранителей – токоограничивающему их действию. Плавкая вставка перегорает много раньше, чем ток в цепи при коротком замыкании успевает достигнуты установившегося значения iуст. Таким образом, ток короткого замыкания ограничивается в 2 – 5 раз и тем самым снижается разрушительное действие электродинамических сил. Если при возможном установившемся токе короткого замыкания 25 кА плавкая вставка перегорела при 8 кА, то значение электродинамических сил в цепи ограничено более чем в 9 раз. Токоограничивающее действие плавких вставок с использованием металлургического эффекта ниже, чем при других способах токоограничения.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно быть осуществлено в возможно более короткое время. Время гашения дуги зависит от конструкции предохранителя и принятого способа гашения. Наибольший ток, который плавкий предохранитель может отключить без каких-либо повреждений или деформаций, препятствующих его дальнейшей исправной работе после смены плавкой вставки, называют предельным током отключения предохранителя.

В современных предохранителях с закрытыми патронами без наполнителя дуга гасится за счет высокого давления, возникающего в патроне вследствие появления дуги, а при наличии наполнителя – за счет интенсивного охлаждения дуги наполнителем и высокого давления, вызываемого дугой в узких каналах наполнителя. При этом гашение дуги происходит в ограниченном объеме патрона предохранителя. За пределы патрона не выбрасываются ни пламя дуги, ни ионизированные газы.

Достаточно совершенная система дугогашения совместно с токоограничивающим действием вставки приводит к неограниченной отключающей способности плавких предохранителей. Это не значит, что предохранители могут отключать сколь угодно большие токи короткого замыкания. Неограниченную отключающую способность следует понимать так: плавкие предохранители могут применяться для защиты цепей, в которых установившийся ток короткого замыкания мог бы достигнуть очень больших значений (в современных крупных энергоустановках можно предполагать 200 – 500 кА).

Плавкие вставки изготовляют из свинца, сплавов свинца с оловом, цинка, меди, серебра и др. Вставки из легкоплавких металлов (свинец, цинк – температура плавления 200 – 420 °С) позволяют получить невысокую температуру всего предохранителя, однако они обладают невысокой проводимостью и получаются значительных сечений, особенно при больших номинальных токах. Широко распространены цинковые вставки; Пары цинка имеют относительно высокий потенциал ионизации, что способствует гашению дуги. Вставки из меди и серебра получаются меньшего сечения, но недостатком их является высокая температура плавления, что приводит при токах перегрузки к сильному нагреву и быстрому разрушению деталей предохранителя. Медные плавкие вставки должны обязательно иметь антикоррозионное покрытие. В противном случае окисление приведет к постепенному уменьшению сечения вставки и несвоевременному перегоранию.

Применение параллельных плавких вставок (при больших токах) позволяет при том же суммарном поперечном сечении вставок получить большую поверхность охлаждения, тем самым улучшить условия охлаждения вставок и лучше использовать объем наполнителя (в предохранителях с наполнителем).