Определение размеров статора

6. По рис. 1.1 для кВ∙А при 2р = 12 предварительно находим внутренний диаметр статора D = 0,92 м.

7. Внешний диаметр статора

Da=kДD = (1,28–1,33)∙0,92 = (1,17–1,22) м.

По табл. 1.1 kД = 1,28–1,33.

По табл. 1.2 ближайший нормализованный внешний диаметр статора Da = 1180 мм = 1,18 м (16-й габарит).

Высота оси вращения h = 0,63 м.

Уточняем внутренний диаметр статора

8. Полюсное деление

9. Расчетная длина статора.

По рис. 1.3 и 1.4 для τ = 0,236 м при 2р = 12 находим:

А=440∙102 А/м; Вδн = 0,89 Тл.

Задаемся: αδ =0,66; kВ=1,15; kоб1= 0,92; αδkВ=0,66∙1,15=0,76, тогда

м.

10. Находим λ

По рис. 1.5 устанавливаем, что найденное значение λ лежит в пределах, ограниченных кривыми при р = 6.

11. Действительная длина статора

12. Число вентиляционных каналов при bК = 0,01м и

lпак = (0,04–0,05) м

Принимаем nК=6.

13. Длина пакета

м.

Округляем до целого мм: lпак=0,045 м.

14. Суммарная длина пакетов сердечника

 

Расчёт зубцовой зоны статора. Сегментировка

15. Число параллельных ветвей обмотки статора.

Так как Iнф = 1510 А > 200 А, то

Выбираем a1=6, что кратно 2р=12, при этом

Iнфuп/ a1 = 1510∙6/6 = 1510 ≤ 3000А (величина uп – из п. 20)

16. Из рис. 2.1 (кривые 2) для τ =0,236 м находим:

t1min=0,031 м, t1max=0,035 м.

17. Максимальное число пазов (зубцов) магнитопровода статора

18. Минимальное число пазов (зубцов) магнитопровода статора

19. Число пазов магнитопровода статора.

Так как Da=1180 м> 990 мм, то статор выполняется сегментированным. В диапазоне ZlmaxZlmin требованиям пп. 2.1–2.5 удовлетворяет число пазов Zl = 90; Zl/(ma1)=90/(3∙6)=5; q1=Zl/(2pm)=90/(2∙3∙6)=2,5, причем b=2, c=1, d=2, 2р/(a1d)=2∙6/(2∙6)=1, Zl=90=2∙3∙3∙5.

Тогда

20. Число проводников в пазу (предварительно)

Так как uп должно быть четным числом, принимаем uп=6.

Уточняем:

п. 9 – ;

п. 11 – ;

п. 13 – , где nк=6 –число каналов (п. 12). Принимаем lпак= 0,041м;

п. 14 – lст1=lпак(nк+1)=0,041∙7=0,287 м;

A=ZluпIнф/(πa1D) = =90∙6∙1510/(π∙6∙0,9) = 481∙102 А/м.

Длина хорды

Расчёт числа проводников в пазу uп, числа сегментов Sст, хорды Н и линейной нагрузки А сводим в табл. 1.

Таблица 1

Вариант Zl Sст Н, м Zs=Z1/Sст q1 a1 uп t1, м А, А/м
90=2∙3∙3∙5 0,205 2,5 0,0314 481∙102
90=2∙3∙3∙5 0,404 2,5 0,0314 481∙102
90=2∙3∙3∙5 0,59 2,5 0,0314 481∙102

Наилучший результат дает 3-й вариант, который обеспечивает минимальные отходы при штамповке из стандартного листа размером 600×1500 мм.

Расчёт пазов и обмотки статора

21. Для предварительного определения ширины паза зададимся максимальной индукцией в зубце (рекомендуемый диапазон 1,6–2,0 Тл), тогда

м.

22. Поперечное сечение эффективного проводника обмотки статора (предварительно)

Плотность тока J1 = AJ1/A=2150∙108/481∙102=4,47∙106 А/м2.

AJ1 определено по рис. 4.1 (кривая 2).

23. Возможная ширина изолированных проводников в пазу

мм.

Выбираем изоляцию катушек класса нагревостойкости В по табл. 4.1. Предварительно двусторонняя толщина изоляции δип при напряжении UH ≤ 660 В принята равной 1,8 мм.

 

 

24. Сечение эффективного проводника обмотки статора

qэф=56,3 мм2 > (18–20) мм2, поэтому необходимо принять qэл=56,3/4=14,1 мм2.

Выбираем проводник марки ПЭТВСД с двусторонней толщиной изоляции 0,5 мм, тогда ширина неизолированного проводника

Однако в связи с тем, что проводник с размером одной из сторон ≈4,55 мм и сечением ≈14,1 мм2 в табл. 4.2 отсутствует, принимаем По табл. 4.2 окончательно размеры медного проводника принимаем:
a1 × b1 = 2,5 × 4; qэл = 9,45 мм2; размеры проводника с изоляцией
a1из × b1из = 3 × 4,5 мм. Сечение эффективного проводника
qэф = nэл qэл = 6 ∙ 9,45 = 56,7 мм2.

25. Ширина паза (уточненная)

где δрш = 0,05nш=0,05∙2 мм.

26. Высота паза (уточненная)


где δрв =0,05uпnв=0,05∙6∙3=0,9 мм.

Масштабный эскиз паза приведен на рис. 1, спецификация паза – в табл. 2.

Отношение h'п1/b'п1 =66,8/11,3=5,9 находится в допустимых пределах.

27. Плотность тока в проводнике обмотки статора (уточненное значение)

28. Проверка индукции в зубце (приближенно)

29. Проверка индукции в ярме статора (приближенно)

где

Так как значение индукции в ярме статора меньше допустимого (1,2 –
1,45 Тл), увеличиваем внутренний диаметр статора до величины D = 0,925 м при прочих равных условиях. Уточняем следующие параметры:

Рис. 1. Паз статора

b'п1 × h'п1 = 11,3∙10-3м × 66,8∙10-3 м;

 

 

Таблица 2

Поз.   Наименование Число слоев Толщина, мм
по ширине по высоте по ширине по высоте
Провод ПЭТВСД 2×4,5 6×3×3
Лента стеклослюдинитовая ЛС 0,13мм 3 вполнахлеста   1,56   3,12
    (0,13∙3∙2∙2)     (0,13∙3∙2∙2∙2)
Лента стеклянная ЛЭС 0,1 мм 1 встык 0,2 0,4
Стеклотекстолит СТ1 1мм - -
Стеклотекстолит СТ1 0,5мм - -
Клин - - -
  Разбухание изоляции - - 0,1 0,9
  Допуск на укладку - - 0,2 0,2
  Общая толщина изоляции на паз - - 1,76 11,52
  Размеры паза в свету (округленно) bп1 × hп1 - - 11,1 66,6
  Размеры паза в штампе b′п1 × h′п1 - - 11,3 66,8

30. Перепад температуры в изоляции

31. Градиент температуры в пазовой изоляции

Окончательно принимаем:

D=0,925 м; Da=1,18 м; τ=0,242 м; t1=0,0323 м;

bп1=11,1∙10-3м; hп1=66,6∙10-3м; lδ=0,326 м; lст1=0,287 м;

l1.= 0,342 м; А= 4,68∙104 А/м; J1= 4,44∙106А/м2; hа=0,0607 м.

Рис. 2. Схема обмотки

Рис. 2. Продолжение

32. Полное число витков фазы обмотки статора

33. Шаг обмотки

;

τп = mq1=3q1=3∙2,5=7,5.

Принимаем шаг обмотки y1=6 (из первого в седьмой паз), тогда β=y1п=6/7,5=0,8. Схема обмотки приведена на рис. 2.

34. Коэффициент укорочения шага обмотки статора

35. Коэффициент распределения обмотки статора

Так как обмотка имеет q1 дробное, то в формулу вместо q1 подставим bd+с = 2∙2+1=5.

36. Обмоточный коэффициент

 

 

Выбор воздушного зазора. Расчёт полюсов ротора

Задавшись перегрузочной способностью генератора Мм/Mн = =2,2, по рис. 5.1 находим xd* =1,3.

37. Приближенное значение воздушного зазора

где Вδ0 = 0,95 Вδн = 0,95·0,89=0,846 Тл.

38. Округляем предварительную величину зазора с точностью до 0,1 мм и принимаем воздушный зазор под серединой полюса 0,003м. Зазор под краями полюса
δм=1,5·δ=1,5·0,003=0,0045 м.

Среднее значение воздушного зазора

39. Находим длину полюсной дуги. Примем α = 0,7, тогда

40. Радиус дуги полюсного наконечника

41. Высота полюсного наконечника при τ = 0,242 м по

табл. 5.1

h = 0,035 м.

42. Длина сердечника полюса и полюсного наконечника

lm = lр = l1 =0,342 м.

43. Находим расчётную длину сердечника полюса. Принимаем lf =0,02 м, тогда

44. Предварительная высота полюсного сердечника

45. Определяем коэффициент рассеяния полюсов. Из

табл. 5.2 имеем k ≈ 7,0, тогда

46. Рассчитаем ширину полюсного сердечника, задавшись

Bm = 1,45 Тл; kcp = 0,95 (полюсы выполнены из стали Ст3 толщиной 1 мм):

Так как vр= πDnн/60=π·0,925·500/60=24,2 м/с<30 м/с, то используем способ крепления полюсов к ободу шпильками.

47. Длина ярма (обода) ротора

где Δlc= 0,1 м.

48. Минимальная высота ярма ротора

где Bj =1,17 Тл.

Округляем с точностью до 1 мм и принимаем hj =0,05 м.

 

 

Расчёт демпферной обмотки

49. Выбираем число стержней демпферной обмотки на полюс Nс = 6.

50. Поперечное сечение стержня

51. Диаметр медного стержня

Округляем dс =10,5·10-3 м, тогда qc=86,6·10-6 м2.

52. Определяем зубцовый шаг ротора. Принимаем

Z=3·10-3 м, тогда

53. Проверяем условия

t2 =0,0307<t1=0,0323;

t2=0,0307>0,8∙t1=0,8·0,0323=0,0258.

Условия выполняются.

54. Пазы ротора выбираем круглые полузакрытые.

Диаметр паза ds=dc+ 0,1=10,5+0,1=10,6 мм.

Раскрытие паза bs = 3 мм, высота шлица hs = 2 мм.

55. Длина стержня

lc=lp+(0,2–0,4)τ=0,342+0,34·0,242=0,424 м.

56. Сечение короткозамыкающего сегмента

qкз=bксhкс=1,15·0,5Ncqc=1,15·0,5·6·86,6·10-6 = 299·10-6 м2.

По табл. 6.1 выбираем прямоугольную медь 7×45 мм

(сечение qкз=314 мм2), причем bкс ≥2dc /3=2·10,5·10-3/3=7·10-3 м =

=7 мм.

Эскизы активных частей генератора представлены на рис. 3.

 

Рис. 3. Синхронный генератор. Продольный (верхний рисунок) и поперечный (нижний рисунок) разрезы активных частей генератора