Молекулярные механизмы S-чекпойнта

В отличие от G1 или G2-чекпойнтов, задержка в S-фазе относительно короткая и может затрагивать только часть генома. Длительность G1 или G2-чекпойнтов связана с процессами репарации ДНК и апоптоза. Отсутствие задержки в S-фазе обычно называется радиорезистентным синтезом ДНК (характерным, напрмер, для АТ-клеток).

В отличие от G1-чекпойнта, в S-чекпойнте не участвуют гены Р53 и Р21. То есть активация и стабилизация Р53 в S-фазе не приводит к изменению его активности как транскрипционного фактора, а может быть связана только с его ролью в процессах репликации ДНК и репарации, спаренной с транскрипцией. Деградация CDC25, приводящая к тому, что комплекс циклин Е– CDK2 киназа остается в неактивной форме и не может вызвать дальнейшее продвижение по клеточному циклу, происходит примерно так же, как и при G1-чекпойнте. ATM-CHK2-CDC25-CDC45 образуют систему быстрого ответа для подавления различных связанных с клеточным циклом процессов, включая репликацию ДНК. АТМ– зависимый ответ достигает максимума через полчаса после воздействия, а ATR-CHK1-CDC25 ветвь ингибирования достигает максимума через 2–4 часа, хотя мишенью является тот же самый серин-123 фосфатазы CDC25А.

Все это подробно показано на рис. 42.

Дополнительными мишенями АТМ являются BRCA1, MRE11-NBS1-RAD50-комплекс, а также недавно описанный новый белок MDC1, содержащий BRCT-повтор. Представляется, что эти белки каким-то недостаточно ясным образом вызывают промежуточные задержки S-фазы. MDC1, например, может быть медиатором тонких реакций, присходящих вокруг гистона H2AX, и привлекать другие белки к месту ДНК-повреждения. Есть также данные о прямом взаимодействии белка MDC1 с CHK2.

В некоторых работах показана такая же связь СНК2 с белками BRCA1 и NBS1. Вероятно, эти белки, как и MRE11, играют какую-то роль в восстановлении репликации ДНК при данном чекпойнте.

 

Рисунок 42. Схема S-чекпойнта, возникающего в ответ на повреждения ДНК.