Теоремы о степенях вершин и изоморфизм графов

Способы задания графов

Рассмотрим три способа задания графов: графический, аналитический и матричный.

1) Графический способ.

Вершины изображают точками на плоскости, а ребра – линиями, соединяющими соответствующие точки. Для изображения дуги используется линия со стрелкой, указывающей направление от начала к концу дуги.

На рисунке 12 изображен смешанный граф с вершинами v1, v2,¼, v6, ребрами e1, e2, e3, e5 и дугой e4. Смежные вершины v1, v2, инциденты ребру e1. Вершины v1, v3, инциденты параллельным ребрам e2 и e3. Вершине v4 инциденты петля e5 и дуга e4, причем v4 является началом дуги e4, а v5 – концом этой дуги. Степень вершины v1 равна 3, вершины v2 – 1, вершины v3 – 2, вершины v4 – 3, вершины v5 – 1, вершины v6 – 0. Таким образом, вершины v2 и v5 – висячие, а вершина v6 – изолированная. В случае дуги e4 точнее было бы говорить о полустепенях исхода и захода вершин v4 и v5, а именно: полустепень исхода вершины v4 равна 3, вершины v5 – 0, полустепень захода вершины v4 равна 2, вершины v5 – 1.

2) Аналитический способ.

Граф задают перечислением элементов множества вершин и множества ребер. Для графа, изображенного на рисунке 12, эти множества: V={v1, v2, v3, v4, v5, v6} и Е={e1, e2, e3, e4, e5}, где e1=(v1, v2), e2=(v1, v3), e3=(v1, v3), e4=(v4, v5), и e5=(v4, v4).

3) Матричный способ.

Имеется несколько вариантов задать граф матрицей. Наиболее употребимыми являются матрица инциденций и матрица смежности.

а) Матрица инциденций – это прямоугольная матрица, число строк которой равно числу вершин, а число столбцов – числу дуг (ребер) графа. Элементы этой матрицы определяются следующим образом:

Таким образом, для графа на рисунке 12 матрица инциденций такова:

    e1 e2 e3 e4 e5
v1
v2
I= v3
v4
v5 -1
v6

По этой матрице легко судить о наличии в графе параллельных ребер (два одинаковых столбца), петли (одна единица в столбце), дуги (значения разных знаков в столбце), изолированной вершины (нулевая строка), висячих вершин (одно ненулевое значение в строке).

б) Матрица смежности вершин – это квадратная матрица, размер которой определяется числом вершин в графе. Элементы этой матрицы определяются так: . Если в графе имеются параллельные ребра, то соответствующий элемент матрицы смежности полагают равным числу этих ребер. Так матрица смежности для графа на рисунке 12 такова:

    v1 v2 v3 v4 v5 v6
v1
v2
S= v3
v4
v5
v6

По виду этой матрицы также несложно судить о наличии в графе кратных ребер, дуг, петель, висячих и изолированных вершин.

Теорема 1: Сумма степеней вершин в неориентированном графе четна и равна удвоенному числу ребер.

Аналогичная теорема может быть сформулирована и для орграфов: сумма полустепеней исхода всех вершин равна сумме их полустепеней захода и равна числу дуг орграфа.

Теорема 2:Число вершин нечетной степени в любом графе четно.

Два графа G1 и G2 называются изоморфными, если существует биективное отображение между множествами их вершин и ребер такое, что соответствующие друг другу по этому отображению ребра графов G1 и G2 инцидентны соответствующим друг другу по этому же отображению парам вершин этих графов.

Согласно определению, графы, изображенные на рисунке 13, изоморфны. Соответствие между множествами вершин и ребер таково:

 

 

 
 

 

 

для вершин:

для ребер: