Массообмен при ферментации
Развитие популяции микроорганизмов зависит от подвода питательных веществ и кислорода к клеткам и отвода от них продуктов метаболизма. Подвод кислорода и отвод газообразных метаболитов осуществляется барботажем воздуха. А интенсификация обменных процессов между жидкой, твердой и газовой фазами обеспечивается за счет перемешивания среды.
Процесс переноса кислорода из газовой фазы в жидкость является определяющим для аэробных процессов культивирования микроорганизмов, т.к. наличие растворенного кислорода в жидкости является основным условием их существования.
Растворимость кислорода в жидкости зависит от многих факторов, но основными являются три: давление, температура и состав культуральной жидкости.
Зависимость концентрации растворенного кислорода в жидкости определяется законом Генри:
С=Р/Е ,
где С - мольная доля газа в жидкой фазе; Р - парциальное давление кислорода в газовой фазе; Е - константа Генри.
Влияние температуры на концентрацию кислорода в жидкости описывается полиномиальной зависимостью вида:
С = а0 + а1*Т + а2*Т2 + а3*Т3 + . . . .
где а0, а1, а2 - коэффициенты уравнения и çа0ç> çа1ç> çа2ç> çа3ç>. . . . .
В частности, концентрация кислорода в воде:
С = 14,16 - 0,3943Т + 0,0077141Т2 - 0,000646Т3 +. . . . .
Растворимость газов в жидкостях с повышением температуры всегда уменьшается, а с повышением давления - увеличивается.
Присутствие питательных веществ и продуктов метаболизма в КЖ снижает растворимость кислорода по сравнению с чистой водой.
ПАВы, присутствующие в КЖ, оказывают двоякое действие: с одной стороны они способствуют увеличению МФП при диспергировании, с другой - загрязняют поверхность газовой фазы и препятствуют переносу кислорода.
Растворимость кислорода в воде или культуральной жидкости не превышает 4-7 мг/л, а потребление кислорода большинством известных микроорганизмов составляет 0,1-0,3 мг/л*c при их массовой концентрации в суспензии 1-2%. Т.е. запаса кислорода в жидкости хватает на 20-30 секунд и поэтому необходим постоянный подвод кислорода. Данная задача решается при помощи барботажа воздуха и использования перемешивающих устройств.
Возникает вопрос: "Сколько воздуха необходимо подавать, чтобы обеспечить нормальные условия жизнедеятельности?".
Формально количество кислорода (и соответственно количество аэрирующего воздуха) может быть определено из стехиометрических соотношений, на практике же рассчитывается по уравнениям массопередачи.
В аппарате протекают одновременно два процесса: процесс абсорбции кислорода воздуха в воду и процесс потребления растворенного О2 микроорганизмами из жидкости. Следовательно концентрация О2 в жидкости определяется соотношением скоростей абсорбции О2 водой и потребления О2 клетками.
Интенсивность первого процесса зависит в основном от технического оформления процесса диспергирования воздуха. Потребление же кислорода клетками связано с их физиологическим состоянием, которое зависит от большого числа факторов, в том числе и от концентрации растворенного О2 в КЖ.
Очевидно (на первый взгляд), что чем больше концентрация кислорода, тем больше его потребление и скорость роста микроорганизмов. Но потребление кислорода микроорганизмами имеет предел. Зависимость удельной скорости потребления О2 от концентрации О2 имеет S-образный вид (рис.15) и описывается уравнением Михаэлиса-Ментена:
q = qмах*(C/(Kс+C)) ,
где С - концентрация О2 в КЖ, г/м3; qmax - величина предельного потребления кислорода, моль/кг*ч; Кс - константа, численно равная концентрации кислорода, при которой потребление = qmax /2 (половине максимального).
Скр - критическое значение концентрации, выше которой процесс не лимитируется кислородом. Если концентрация О2 ниже Скр, то клеткам не хватает кислорода и они частично погибают. Значение Скр зависит от вида микроорганизмов, фазы их роста и от температуры среды.
Для большинства биомасс величина этой концентрации составляет 10-20% от значения равновесной концентрации кислорода, т.е. 0,7-1,4 мг/л, но в аппаратах ее стремятся поддерживать на уровне 1,5-3 мг/л с целью компенсации малой скорости диффузии О2 в неоднородной среде.
Это ведет к завышенному расходу воздуха и коэффициент использования (утилизации) кислорода в аппаратах составляет 5-30%.19