Лекция№ 6. Разработка месторождений при режимах растворенного газа и газонапорном

 

При уменьшении давления ниже давления насыщения в разрабатываемом пласте развивается режим растворенного газа. Когда насыщенность порового пространства свободным газом, выделившимся из нефти, еще мала, газ остается в нефти в виде пузырьков. С увеличением же газонасыщенности в связи с прогрессирующим снижением пластового давления пузырьки газа всплывают под действием сил гравитации, образуя в повышенной части пласта газовое скопление — газовую шапку, если ее образованию не мешает слоистая или иная неоднородность.

В отличие от первичных газовых шапок нефтегазовых месторождений, существовавших в них до начала разработки, газовая шапка, образовавшаяся в процессе разработки, называется вторичной.

Выделяющийся из нефти газ, расширяясь со снижением давления, способствует вытеснению нефти из пласта. Режим пласта, при котором происходит такое вытеснение нефти, называют режимом растворенного газа. Если произошло отделение газа от нефти в пласте в целом и образовалась газовая шапка, режим растворенного газа сменяется газонапорным.

Опыт разработки нефтяных месторождений и теория фильтрации газонефтяной смеси с учетом сил гравитации показывают, что почти всегда режим растворенного газа довольно быстро переходит в газонапорный. Часто режим растворенного газа может существовать в нефтяном пласте в сочетании с упругим режимом в его законтурной области или даже в сочетании с водонапорным, если пластовое давление близко к давлению насыщения. Тогда вблизи добывающих скважин возникает режим растворенного газа, а вблизи нагнетательных — водонапорный. Такие режимы пластов называют смешанными.

Рассмотрим разработку пласта при смешанном режиме — упругом в его законтурной области и растворенного газа — в нефтенасыщенной части пласта. Пусть разрабатываемый пласт имеет форму, близкую к кругу (рис. 1). Его законтурная водоносная область достаточно хорошо проницаемая и простирается очень далеко («до бесконечности»). Она разрабатывается при упругом режиме. Давление на контуре нефтенасыщенной части пласта можно определить по методике, изложенной в предыдущей лекции.

Пусть нефтяной пласт разрабатывается с использованием равномерной сетки добывающих скважин. Радиус контура питания каждой добывающей скважины rк можно считать равным половине расстояния между скважинами. Если r = rк пластовое давление р=ркнас (рнас — давление насыщения).

При приближенном расчете дебитов добывающих скважин можно принять рк =a pкон(τ), где а — некоторый постоянный коэффициент.

 

 

Рис. 1. Схема нефтяного месторождения круговой формы в плане, разрабатываемого при смешанном режиме:

1 – условный контур нефтеносности; 2 – аппроксимация условного контура нефтеносности окружностью радиусом R; 3 – добывающие скважины

Итак, при смешанном режиме давление на контурах добывающих скважин определяют с учетом контурного в нефтяной залежи, которое, в свою очередь, вычисляют на основе теории упругого режима, если задано изменение во времени текущего поступления воды из законтурной области в нефтенасыщенную часть пласта qзв= qзв(t).

Если рк близко к давлению насыщения, но ниже его и, следовательно, насыщенность пласта свободным газом незначительна, то можно приближенно считать текущий объем поступающей воды в нефтенасыщенную часть пласта из законтурной области равным текущей добыче пластовой нефти, т. е. qзв=qн.

Если известна текущая добыча пластовой нефти из нефтяной залежи в целом, то необходимо лишь вычислить дебиты скважин с тем, чтобы определить, сколько скважин необходимо пробурить на залежи для обеспечения указанной текущей добычи нефти.

Определим дебиты скважин при режиме растворенного газа. Перераспределение давления вблизи скважин происходит значительно быстрее, чем изменение контурного в нефтяной залежи pкон(τ) и соответственно давления на контуре питания скважин рк = рк (t). Поэтому распределение давления при rc ≤ r≤ rk можно считать установившимся в каждый момент времени, т. е. квазистационарным.

На характер течения газированной нефти в пористой среде влияет растворимость в ней газа. Для количественного определения растворимости газа в нефти в теории разработки нефтяных месторождений обычно используют закон Генри. Однако, по-видимому, в зависимости от свойств конкретных нефтей и газов представляют этот закон различным образом. Для расчетов разработки пластов при режиме растворенного газа используют формулу закона Генри обычно в следующем виде:

Vгp0VнP, (1)

где Vгp — объем газа, приведенный к стандартным (атмосферным) условиям, растворенный в нефти; α0 — коэффициент растворимости; Vн — объем нефти в пластовых условиях вместе с растворенным в ней газом; р— абсолютное давление.

Для реального газа необходимо учитывать коэффициент его сверхсжимаемости z=z(p, T). При изотермическом процессе уравнение состояния реального газа можно представить в виде

(2)

где ρг, z, ргат , z — соответственно плотность и коэффициент сверхсжимаемости газа при пластовом р и атмосферном рат давлениях.

Для массовой скорости фильтрации газа νг на основании обобщенного закона Дарси имеем выражение

(3)

Для массовой скорости фильтрации растворенного в нефти газа имеем

(4)

И наконец, скорость фильтрации vн выражается следующим образом:

(5)

Найдем отношение суммарного расхода фильтрующегося в пласте газа (свободного и растворенного в нефти), приведенного к атмосферным условиям, к объемной скорости фильтрации нефти, называемое пластовым газовым фактором Г. При установившейся фильтрации значение Г остается постоянным в любом цилиндрическом сечении пласта при rc ≤ r≤ rk (rc — радиус скважины).

Из (3), (4) и (5) имеем

 

(6)

Из (6) следует, что есть связь между давлением р и насыщенностью пласта нефтью (жидкой углеводородной фазой) sж. Таким образом, при установившемся движении газированной жидкости

p=p (sж) (7)

В то же время, согласно обобщенному закону Дарси, относительная проницаемость для нефти

kн = kн (sж) (8)

На основе (7) и (8) заключаем, что должна существовать зависимость относительной проницаемости для нефти от давления

kн=kн*(p) (9)