Переходные процессы в сетях высокого напряжения
В распределительных устройствах при замыкании и размыкании разъединителей возникают многочисленные повторные зажигания, которые могут вызвать во вторичных устройствах перенапряжения до 20 кВ. Они могут приводить к ложному срабатыванию зашиты сети или даже к повреждению вторичных устройств. На примере подключения короткого обесточенного участка линии к находящейся под напряжением сборной шине можно наглядно объяснить причину возникновения перенапряжений (рисунок 5.8). Если напряжение пробоя сближающихся контактов становится меньше максимального значения переменного напряжения, происходит первый пробой, во время которого подключаемый участок линии приобретает потенциал шины. Если ток уменьшился до значений, которыми можно пренебречь, дуга обрывается. Так как изолированный участок линии сохраняет свой потенциал, второй пробой происходит, если мгновенное значение переменного напряжения общей шины вновь отличается от значения потенциала отсоединенного участка линии на значение напряжения пробоя ставшего за это время меньшего промежутка между контактами. Этот процесс неоднократно повторяется до тех пор, пока контакты не будут касаться друг друга (рисунок 2.8).
Рисунок 5.8 - Возникновение перенапряжения при включении короткой ненагруженной линии (идеальный случай)
Быстрые положительные и отрицательные изменения потенциала подключаемого участка линии вызывают токи смещения через паразитные емкости относительно соседних проводов ,максимальные значения которых из-за большой крутизны изменения напряжения могут принимать большие значения. Обусловленные током заряда линии и током смещения магнитные поля индуктируют в соседних контурах напряжения помех. Изображенная на рис. 2.8. форма напряжения действительна только для "электрически коротких" участков линии, время пробега волны по которыми мало по сравнению с временем развития пробоя (от нескольких десятков до сотен наносекунд в зависимости от расстояния между контактами). Даже в этом случае зарядка и перезарядка протекают не так гладко, как изображено на рис. 5.8., а подобно колебательному переходному процессу. Токи утечки могут вызвать снижения напряжения на линии (на рис. 5.8. это снижение не показано). Если время пробега волны в отключенной линии больше, чем время развития повторных зажиганий, то при каждом пробое возникают волны напряжения и тока, которые в конце линии отражаются и делают более сложным изменение напряжения, чем показанное на рисунке 5.8. Распространяющиеся вдоль отключенного провода волны наводят в параллельно проходящих проводах напряжения и токи помех.
При размыкании разъединителей протекают очень похожие процессы, однако при этом амплитуды изменений потенциала или волн после начала процесса размыкания с увеличением расстояния между контактами увеличиваются и даже могут принять двойное максимальное значение. Описанные процессы в элегазовых распределительных устройствах высокого напряжения, у которых времена нарастания процессов первичного и повторного зажигания лежат в наносекундном диапазоне, могут вызвать многие проблемы. Коммутационные процессы в этом случае внутри закрытой конструкции сопровождаются волнами, которые из-за неравномерности волнового сопротивления (изолированные фланцевые соединения, ответвления, проводники) частично отражаются, частично проходят дальше или даже могут выходить во внешнее пространство.