Свойства двойного интеграла.
1. Линейность
а) свойство суперпозиции .=
+
б) свойство однородности.=
Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Они равны интегральным суммам для правых частей равенств, так как число слагаемых конечно. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.
2. Аддитивность.
Если,то
=
+
Доказательство. Выберем разбиение области D так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы D1, так и элементы D2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.
3. -площадь области D.
4. Если в области D выполнено неравенство , то
(неравенство можно интегрировать).
Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.
Заметим, что, в частности, возможно