Вычисление двойного интеграла в декартовой системе координат.

 

Предположим, что D – плоская область, лежащая в некоторой плоскости и введем в этой плоскости декартову систему координат.

Область D назовем правильной, если любая прямая, параллельная декартовым осям, пересекает ее не более чем в двух точках.

Можно показать, что замкнутую ограниченную область с кусочно-гладкой границей можно представить в виде объединения правильных областей, не имеющих общих внутренних точек. Поэтому интеграл по области D можно вычислять как сумму интегралов (свойство 2) по правильным областям. Будем считать, что нам надо вычислить двойной интеграл по правильной области.

Вспомним формулу для вычисления объема тела по площадям параллельных сечений , где - «крайние» точки области D по x., - площадь сечения тела одной из параллельных плоскостей (при фиксированном x). Эта плоскость пересекается с плоскостью OXY по прямой, параллельной оси OY, соединяющей точку входа в область j(x) с точкой выхода f(x). Графики функций j(x), f(x) образуют границу области D. =- площадь криволинейной трапеции..

Подставляя в формулу для объема, получим . Это повторный интеграл, вернее один из них. Второй повторный интеграл можно получить, вводя сечения, параллельные оси OX. По аналогии . По смыслу двойного интеграла (объем цилиндрического тела)

==

 

Примеры. Записать двойной интеграл по заданной области и повторные интегралы.

1.

1.

==

 

2. +=+  

 

3. =( внутренний интеграл не берется)= =

 

 

Геометрический и физический «смысл» двойного интеграла.

 

К двойному интегралу .мы пришли от задачи об объеме цилиндрического тела, расположенного над областью D с переменной высотой .

В этом и состоит его геометрический смысл.

Можно рассмотреть задачу о массе плоской пластины, представляющей собой плоскую область D, плотность которой равна , т.е. меняется от точки к точке. Достаточно ассоциировать переменную плотность с переменной высотой в задаче об объеме, чтобы понять, что мы имеем ту же модель.

Поэтому физический смысл двойного интеграла заключается в том, что равен массе плоской области D, плотность которой равна .

 

Пример. Вычислить объем V цилиндрического тела, ограниченного двумя параболическими цилиндрами z = 1-y2 и x = y2 и площадь его основания D, расположенного в плоскости OXY..

 

 

Лекция 2. Приложения двойного интеграла.

Теорема.Пусть установлено взаимно однозначное соответствие областей Dxy и Duv с помощью непрерывных, имеющих непрерывные частные производные функций . Пусть функция f(x,y) непрерывна в области Dxy. Тогда

, где - якобиан (определитель Якоби).

Доказательство (нестрогое). Рассмотрим элементарную ячейку в координатах u, v: Q1, Q3, Q4, Q2 – прямоугольник со сторонами du, dv. Рассмотрим ее образ при отображении - ячейку P1, P3, P4, P2.

P1
y
x
P3
P4
P2
Q1
Q2
Q4
Q3
v
u

Запишем координаты точек Q1 (u, v), Q2 (u+du, v), Q3 (u, v+dv),  

 

Приближенно будем считать ячейку P3, P4, P1, P2.параллелограммом, образованным сторонами . Вычислим площадь этой ячейки как площадь параллелограмма.

.

Подставляя в интеграл площадь параллелограмма в качестве площади ячейки dxdy, получим .

Следствие. Рассмотрим частный случай – полярную систему координат : . .

Пример. Вычислить площадь внутри кардиоиды .

.

 

Пример. Вычислить объем внутри прямого кругового цилиндра , ограниченный плоскостью в первом октанте.

.

Для каждой задачи можно выбрать ту систему координат, в которой вычисления проще. Декартова система координат удобна для прямоугольных областей. Если стороны прямоугольника параллельны координатным осям, то пределы интегрирования в повторном интеграле постоянны. Полярная система координат удобна для круга, кругового сектора или сегмента. Если центр круга находится в начале координат, то пределы интегрирования по углу и радиусу постоянны.

 

Приложения двойного интеграла.

 

С помощью двойного интеграла можно вычислить объем цилиндрического тела, площадь и массу плоской области. От этих задач мы и пришли к двойному интегралу.

Но возможны и менее очевидные приложения.

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.