Одноэтапный алгоритм БПФ
Разделим исходную N-точечную последовательность на две
-точечные (начальные условия одноэтапного алгоритма БПФ):
· четных отсчетов;
· нечетных отсчетов.

Рис. 13.1. Деление исходной последовательности

Рис. 13.2. Пример деления 8-точечной последовательности
После этого запишем ДПФ (12.17) в виде:

где
отображает четные, а
— нечетные значения
.
Вынесем
за знак второй суммы:
, (13.2)
представим
в виде:

и представим ДПФ (13.2) в виде:
,
,
и далее, с учетом обозначений сумм:
,
, (13.3)
где:
—
—
и
—
; (13.4)
. (13.5)
Вывод: при вычислении N-точечного ДПФ
(13.3)
и
достаточно вычислить
Определим поворачивающей множитель на второй половине периода
:
(13.6)
Вывод:при вычислении N-точечного ДПФ
поворачивающий множитель
достаточно вычислить
Вывод: N-точечное ДПФ
(13.3) можно выразить через
-точечные ДПФ
и
(на рис. 13.4 — это последний,
-й этап):
(13.7)
Согласно (13.7), N-точечное ДПФ
вычисляется:

и
;

и
;
…………………………….

и
.
Размерность вычисляемого ДПФ соответствует нижнему индексу
Сокращение количества операций достигнуто за счет одновременного (параллельного) вычисления по верхней и нижней формулам!
Это оказалось возможным в результате
Одновременное вычисление по верхней и нижней формулам в (13.7) при фиксированном (одном)
называют операцией «бабочка» — коротко «бабочкой» — и изображают в виде сигнального графа (рис. 13.3).

Рис. 13.3. Сигнальный граф операции «бабочка»
Для вычисления N-точечного по формуле (13.7) потребуется «бабочек».

Рис. 13.4. Поэтапное вычисление N-точечного ДПФ