Общие сведения о композиционных материалах

Оценка деятельности HR-службы по обучению персонала

Показатель, характеризующий результативность деятельности HR-службы (Рк), направленной на обучение персонала, напрямую зависит от процента работников, повысивших качество и эффективность работы после обучения.

Рк = Р1 : Р2 х 100%, (5.1)

где Р1 – количество работников, повысивших качество и эффективность работы после обучения;

Р2 – количество работников, прошедших обучение за отчетный период.

Например, за отчетный период на предприятии обучилось 120 человек, из них 100 работников повысили эффективность труда. В этом случае Рк = 83%. Также проводится анализ значений показателя в динамике, устанавливается норматив. Далее выявляются причины отклонений фактических значений показателя от нормативного и осуществляются корректирующие действия.

Для измерения качества и эффективности работы персонала до и после обучения в подразделениях должны быть установлены критерии оценки (например, выполнение норм выработки, снижение доли брака, усовершенствование технологии и т. п.). Для оценки качества работы персонала после обучения должен быть установлен временной лаг (допустим, три месяца). Это значит, что только по истечении трех месяцев со дня завершения обучения непосредственный руководитель может сделать окончательный вывод о результативности процесса обучения.

Качество работы менеджера по персоналу, ответственного за выбор или подготовку программы обучения персонала, оцениваются по формуле

Кк = К2 / К1х 100%, (5.2)

где Кк – коэффициент качества подбора обучения для сотрудников компании;

К1 – количество сотрудников, прошедших обучение;

К2 – количество сотрудников, не принесших в компанию рациональных предложений.

То есть, если сотрудник после прохождения обучения, предложенного менеджером по персоналу, получил знания только для себя (повысил свою ценность на рынке труда), но не привнес ничего ценного для организации, можно считать, что обучение подобрано некачественно – развитие сотрудника не повлияло на его результативность.

 

Композиционные материалы делают с использованием “композитной” технологии, которая родилась не вчера. В древней Греции мраморные колонны укреплялись металлическими прутьями, а собор Василия Блаженного, что в Москве, стоит на каменных плитах, скрепленных железом. Так что парижанин Ж. Мотье, получивший в 1867 году патент на железобетон, сам того не подозревая, шел по стопам древних.

Гоночные яхты, легкие и прочные, делают из другого композита – стеклопластика: полимера, армированного стекловолокном. Это, можно сказать, классический пример современного подхода к композитам. Чтобы его создать, технологам пришлось отыскивать новые свойства традиционного материала. Например, из одного кубического сантиметра стекла можно вытянуть тончайшую нить в 450 километров. При этом свойства стекла разительно меняются. Оно совершенно теряет хрупкость, легко гнется и …растворяется в воде. Приходится прятать стеклянные нити от воздействия влаги внутрь фенолформальдегидных, эпоксидных и других водонепроницаемых смол. Сегодня технологи научились вытягивать тончайшие нити из многих веществ, даже из базальта. Их применяют для армирования бетона или керамики – все той же глины. И получают материал прочнее стали, которому нипочем тысячеградусные температуры. Его используют для изготовления зубчатых колес, матриц пресс-форм и штампов, деталей и узлов двигателей как автомобильных, так и ракетных.

Получать нити из стекла, камня или металла куда сложнее, чем, скажем, из хлопка или шелка, хотя специалистам во многом помог опыт текстильщиков, работающих с синтетическими волокнами. Такие нити не прядут, а отливают. Расплавленный пластик пропускают сквозь тончайшие отверстия фильеры, при выходе расплав застывает, образуя тончайшие (микронные) нити из тугоплавких и износостойких материалов. Так, к примеру, получают углеродные волокна – один из наиболее распространенных материалов для получения композитов в наши дни. Известна другая технология получения углеродных волокон, получившая название метод выращивания “усов”. “Усами” специалисты называют нитевидные структуры, которые образуются при направленной кристаллизации расплавов. Молекулярный порядок в них почти идеальный – отсюда и высочайшая прочность.

 

Принцип построения композиционных материалов человек заимствовал у природы. Типичными композиционными материалами являются стволы деревьев, стебли растений, кости человека и животных.

Композиционные материалыискусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

Или волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

 

Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.

Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.

Композиционные материалы,представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом эффективно используются индивидуальные свойства составляющих композиции.

 

КМ позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств КМ невозможно получить при использовании обычных материалов. Их применение дает возможность создавать ранее недоступные, принципиально новые конструкции.

Благодаря КМ стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин и конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов.

 

Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред.

Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

Преимущества композиционных материалов:

· высокая удельная прочность;

· высокая жёсткость (модуль упругости 130-140 ГПа);

· высокая износостойкость;

· высокая усталостная прочность;

· из КМ возможно изготовить размеростабильные конструкции.

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов:

Большинство классов композитов (но не все) обладают недостатками:

· высокая стоимость;

· анизотропия свойств;

· повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

 

Важными характеристиками материалов, работающих в этих условиях, являются удельная прочность σв и удельная жесткостьЕ, где σв — временное сопротивление, Е — модуль нормальной упругости, ρ – плотность материала.

Традиционные методы металловедения путем легирования и термомеханической обработки позволяют существенно повысить прочность металлов и сплавов. Однако они не могут изменить модуль упругости высокопрочного материала.

По удельной прочности и жесткости композиционные материалы превосходят все известные конструкционные сплавы (рис. 1).

Рис.1. Взаимосвязь удельной прочности и удельного модуля упругости некоторых неармированных и композиционных материалов, армированных волокнами [50 об. %]: 1 — алюминий; 2 — титан и сталь; 3 — титан, армированный бериллиевой проволокой; 4 — титан, армированный волокнами SiC; 5 — титан, армированный волокнами борсика (SiC/B/W); 6 — алюминий, армированный борными волокнами; 7 — эпоксидная смола, армированная волокнами графита; 8 — эпоксидная смола, армированная борными волокнами

 

В композиционных материалах действует другой механизм. Трещина, двигаясь в матрице, встречает препятствие на границе раздела матрица—волокно. Волокна тормозят развитие трещин, и их присутствие в пластичной матрице приводит к росту вязкости разрушения.

Таким образом, в композиционной системе сочетаются два противоположных свойства, необходимых для конструкционных материалов — высокая прочность за счет высокопрочных волокон и достаточная вязкость разрушения благодаря пластичной матрице и механизму рассеяния энергии разрушения.

КМ состоят из сравнительно пластичного матричного материала-основы и более твердых и прочных компонентов, являющихся наполнителя-ми. Свойства КМ зависят от свойств основы, наполнителей и прочности связи между ними.

Матрица связывает композицию в монолит, придает ей форму и служит для передачи внешних нагрузок арматуре из наполнителей. В зависимости от материала основы различают КМ с металлической матрицей, или металлические композиционные материалы (МКМ), с полимерной — полимерные композиционные материалы (ПКМ) и с керамической — керамические композиционные материалы (ККМ).

 

 

Классификация композиционных материалов

 

Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.

По геометрии наполнителя композиционные материалы подразделяются на три группы:

· с нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;

· с одномерными наполнителями, один из размеров которых значительно превышает два других;

· с двухмерными наполнителями, два размера которых значительно превышают третий.

По схеме расположения наполнителей выделяют три группы композиционных материалов:

· с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;

· с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;

· с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

По природе компонентов композиционные материалы разделяются на четыре группы:

· композиционные материалы, содержащие компонент из металлов или сплавов;

· композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;

· композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;

· композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.

Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование твердых растворов или химических соединений.

В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.

В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5-10 % частиц наполнителя.

В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Материалы, армированные нитевидными монокристаллами, были созданы в начале 70-х годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К (пар-жидкость-кристалл) – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.

Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности.

Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения КПД тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).

Армированные нити оксида алюминия (Al2O3) получают прессованием алюминиевой пудры с последующим спеканием (САП (спеченная алюминиевая пудра)). Преимущества САП проявляются при температурах выше 300oС, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Тпл.

Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

Применяют дисперсные частицы тугоплавких фаз типа Al2O3, SiO2, BN, SiC, имеющие малую плотность и высокий модуль упругости. КМ обычно получают методом порошковой металлургии, важным преимуществом которого является изотропность свойств в различных направлениях.

Марки САП, применяемые в России, содержат 6–23 % Al2O3. Различают САП-1 с содержанием 6–9, САП-2 — с 9–13, САП-3 — с 13–18 % Al2O3. С увеличением объемной концентрации оксида алюминия возрастает прочность композиционных материалов. При комнатной температуре характеристики прочности САП-1 таковы: σв = 280 МПа, σ0,2 = 220 МПа; САП-3 таковы: σв = 420 МПа, σ0,2 = 340 МПа.

Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить прочность материала при температуре 1650oС. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его хрупкость в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.

Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.

Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.

Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе алюминия, магния, меди, кобальта, титана, ниобия и других элементов, поэтому они используются в широком интервале температур.