Сравнительный анализ передачи с неподвижными осями планетарной передачи.
Основные расчетные зависимости для определения параметров зубчатого колеса, исходя из схемы станочного зацепления.
1. Радиус окружности вершин ra.
ra = r + xm + ha*m – Δуm (1)
Δуm – уравнительное смещение инструмента (расстояние между граничной прямой инструмента и окружностью вершин заготовки).
Δу вводится в расчет для того, чтобы при создании зубчатой передачи с колесами z1 и z2 было бы обеспечено зацепление этих колес без бокового зазора при стандартном радиальном зазоре.
2. Радиус окружности впадин rf.
rf = r – ha*m – c*m + xm (2)
3. Определение высоты зуба.
h = ra – rf = 2 ha*m + c*m – Δуm (3)
4. Определение коэффициента изменения толщины зуба.
Δ=2.x.tga
Специальные передаточные (планетарные) механизмы.
Планетарным называется механизм, имеющий в своем составе хотя бы одно звено с подвижной геометрической осью в пространстве.
Звено, имеющее подвижную геометрическую ось в пространстве, называется сателит.
Звено, на которое устанавливают ось сателитов, называется водило (Н).
Зубчатые колеса, имеющие неподвижную геометрическую ось в пространстве, называются центральными.
Центральное колесо, имеющее внешние зубья, называется солнечное колесо.
Центральное колесо, имеющие внутренние зубья, называется коронная шестерня (опорное колесо).
Достоинства планетарных передач:
1. имеют малые габариты и вес из-за того, что поток мощности, подводимый к центральному колесу, распределяется по к сателитам (к – количество сателитов). Затем поток мощности собирается на выходном звене. На одной планетарной передаче можно поставить до 24 сателитов.
2. очень высокий КПД, в среднем 0.99.
Недостатки:
Если число сателитов неравно 3, то необходим специальный механизм, который бы выравнивал нагрузку между сателитами. Этот механизм утяжеляет и удорожает конструкцию.
На первое колесо подается крутящий момент, а со второго снимают.
Ось В неподвижна Ось В подвижна
u1-2 ==
u1-Н =
Через число зубьев u1-Н записать нельзя, т.к. ось В – подвижная ось.
Чтобы записать передаточное отношение через число зубьев, применим метод обращения движения:
мысленно сообщим всем звеньям механизма, включая стойку, дополнительное движение с угловой скоростью -wн. Получим обращенный планетарный механизм с неподвижными осями зубчатых колес.
В обращенном движении звенья этого механизма будут иметь следующие угловые скорости:
w1* = w1 – wН
w2* = w2 + (– wН) = w2 – wН
wН* = wН – wН = 0
- формула Виллиса