Критерии конструирования композита

Классификация композиционных материалов

 

Классификация композитов может осуществляться по разным признакам.

1. По природе компонентов (обычно материала матрицы) композиционные материалы делят на металлические, полимерные, жидкокристаллические, керамические, другие неорганические материалы (углерод, оксиды, бориды и др.). Обычно композиты получают общее название по материалу матрицы.

2. По структуре композита их классифицируют на каркасные, матричные, слоистые, комбинированные.

К композитам с каркасной структурой относят, например, псевдосплавы, полученные методом пропитки. К композитам с матричной структурой - дисперсно-упрочненные и волокнистые композиты, а со слоистой структурой - композиты, составленные из чередующихся слоев фольги или листов материалов различной природы или состава. К композиционным материалам с комбинированной структурой относят композиты, включающие комбинации первых трех групп (например, псевдосплавы, каркас которых упрочнен дисперсными включениями –каркасно-матричная структура и др.).

3. По геометрии армирующих компонентов (наполнителя) композиты подразделяют на порошковые и гранулированные (армированы частицами), на волокнистые (армированы волокнами, нитевидными кристаллами), которые в свою очередь делятся на непрерывные и дискретные, слоистые (армированы пленками, пластинами, слоистыми наполнителями).

4. По расположению компонентов (схеме армирования, рис.2.9.1) композиты классифицируют на: изотропные или квазиизотропные (порошковые, дисперсно-упрочненные, хаотично армированные дисперсными частицами, дискретными или непрерывными волокнами и др.), анизотропные (волокнистые, слоистые с определенной ориентацией армирующих элементов относительно матрицы).

Изотропные материалы имеют одинаковые свойства во всех направлениях, анизотропные - разные. К числу изотропных композитов относятся псевдосплавы и хаотично армированные материалы. Упрочнение хаотично армированных композитов осуществляется короткими (дискретными) частицами игольчатой формы, ориентированными в пространстве случайным образом. В качестве таких частиц используют отрезки волокон или нитевидные кристаллы (усы), при этом композиты получаются квазиизотропными, т.е. анизотропными в микрообъемах,ноизотропными в макрообъеме всего изделия.

Анизотропия композита является конструкционной, она закладывается специально для изготовления конструкций, в которых наиболее рационально можно было ее использовать. Возможность управления свойствами вновь создаваемых материалов, особенно хорошо реализуемая при проектировании гибридных (армированных несколькими типами наполнителей) композитов, оказывает существенное влияние на совершенствование технологического проектирования. Например, композиты с матричной структурой, упрочненные армирующими элементами, ориентированными определенным образом в пространстве, относятся к упорядоченно армированным. Они подразделяются на одноосно армированные или однонаправленные (с расположением арматуры вдоль одной оси), двухосноармированные

 

Рис. 2.9.1. Схемы армирования композиционных материалов

 

(с плоскостным расположением арматуры) и трехосноармированные (с объемным расположением арматуры).

Часто композит представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Однако, каждый слой можно армировать также непрерывными волокнами, сотканными в ткань определенного рисунка (средний ряд на рис.2.9.1), которая представляет собой исходную форму, по ширине и длине соответствующую исходному материалу. Разработанные к настоящему времени геометрии армирования позволили отказатьсяотпослойной сборки материала. Волокна сплетают в трехмерные структуры (нижний ряд на рис.2.9.1). В некоторых случаях уже на этой стадии можно задать форму изделию из композита. Выбор среди возможных типов способа армирования осуществляется на основе экономических соображений и требований, предъявляемых к работе изделий.

Традиционно выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.

Контроль микроструктуры композита позволяет наилучшим образом учесть распределение нагрузок, которым будет подвергаться изделие. В то же время, в конструкции изделия отразятся и отличительные свойства композита: зависимость от ориентации и сложности формы, которую им можно придать в процессах формования (при прессовании, прокатке, намотке, армировании и др.). Трудности, возникающие при одновременном конструировании изделия и его материала, предполагают, что промышленный дизайн будет все больше зависеть от совместных разработок специалистов разных областей, а также от компьютерного моделирования этих работ. Только такой подход обеспечит полное использование потенциальных возможностей композитов в технологиях будущего.

Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.

5. По количеству компонентов композиционные материалы делят на полиматричные, испольующие в одном материале несколько матриц, и гибридные(полиармированные), применяющие наполнители различной природы.

Композиты, которые содержат два или более различных по составу или природе типа армирующих элементов, называются полиармированными или гибридными. Гибридные композиты могут быть простыми, если армирующие элементы имеют различную природу, но одинаковую геометрию (например, стеклоуглепластик – полимер, армированный стеклянными и углеродными волокнами), и комбинированными, если элементы имеют и различную природу, и различную геометрию (например, бороалюминий с прослойками из титановой фольги.

6. По методу получения композиты классифицируют на искусственные и естественные. К искусственным относят все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным – сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путем в процессе направленной кристаллизации.

По мере создания новых композитов «старые» виды классификации расширяются и могут возникать новые.

 

 

Для успешного конструирования композиционного материала недостаточно учитывать лишь свойства отдельных компонентов, нужно создавать материал, обладающий необходимыми качествами.

При конструировании композита особенно важно:

- определить требуемые свойства композита и наиболее подходящие материалы для их реализации;

- обратить внимание на физическую, химическую, механическую и т.д. совместимости компонентов даже в наиболее тяжелых условиях работы, например, они должны одинаково или пропорционально деформироваться;

- соблюдать определенную геометрию расположения компонентов композита (более прочная составляющая должна иметь вытянутую форму, например волокна, ленты, фольги, а менее прочная составляющая должна ее окружать);

- выбрать наиболее эффективную и экономичную технологию изготовления композита.

После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи – изготовлению композиционного материала, включающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения - напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ граничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, прочность и другие важные эксплуатационные характеристики нового материала. Осуществление контроля не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало уступать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита.

В настоящее время в мировой практике при массовом производстве композитов целевого назначения проводят предварительный системный количественный анализ. Обычно к решению проблем, связанных с производством новых материалов, применяют два метода такого анализа.

Многофакторный анализ полезности дает возможность определить "ценность" свойств того или иного материала в конкретном применении.

Метод моделирования процесс—стоимость основан на моделировании стоимости производства той или иной детали при ее изготовлении из различных материалов разными технологическими способами. Модели позволяют определить стоимостные последствия нескольких предполагаемых вариантов и проанализировать "чувствительность" стоимости к изменениям таких переменных, как выход годных изделий и объем производства, например, «конкуренция» между альтернативными формовочными процессами наиболее высока в производстве авиационных двигателей. Стоимость изделия оказывается менее важной, чем проблема выбора такого процесса, который обеспечил бы наиболее близкое соответствие изделия техническим условиям.

Применение новых композиционных материалов является важным фактором в решении таких фундаментальных экономических проблем, как ограниченность природных ресурсов, недостаток стратегических материалов, поддержание темпов экономического развития и роста производительности труда, сохранение конкурентоспособности на мировом рынке. Первая из этих проблем может быть проиллюстрирована на примере меди. Спрос на этот металл продолжает оставаться стабильным, о чем свидетельствует тот факт, что даже очень бедные медью рудные месторождения все еще эксплуатируются. Однако, как электропроводящий металл медь вытесняется, например, композитами на основе алюминия и полимеров. В промышленности средств связи медь считается устаревшим материалом и ей на смену приходят оптические волокна.

2.9.4. Композиционные материалы с металлической матрицей

В качестве металлической матрицы чаще всего используется алюминий, магний, никель и их сплавы. Наполнителем служат упрочняющие высокопрочные волокна (волокнистые материалы) или тонкодисперсные тугоплавкие частицы, не растворяющиеся в основном металле (дисперсно-упрочненные материалы).Металлическая матрица связывает волокна (дисперсные частицы) в единое целое – композиционный материал (КМ).
На рис.2.9.2. приведены структуры КМ (рис.2.9.2,а) и схемы армирования КМ непрерывными волокнами (рис.2.9.2,б). Структура 1 характеризует дисперсно-упрочненные КМ. Структуры 2 и 3 – волокнистые КМ с дискретным и непрерывным волокном соответственно.

Волокнистые КМ. Они делятся, по механизму армирующего действия, на дискретные l/d = 10-103 и с непрерывным волокном l/d = ¥ . Дискретные волокна располагаются в матрице хаотично. Чем больше отношение длины l к диаметру d волокна, тем выше степень упрочнения. Чаще КМ представляет слоистую структуру, в котором каждый слой армирован большим числом параллельных непрерывных волокон. КМ отличаются от обычных сплавов высокими значениями временного сопротивления и предела выносливости (на 50 - 100%), модуля упругости, коэффициента жесткости и пониженной склонности к трещинообразованию. Применение КМ повышают жесткость конструкций при одновременном снижении металлоемкости. Прочность КМ определяется свойствами волокон, которые должны обладать более высокими прочностными характеристиками и модулем упругости.
Для упрочнения алюминия, магния и их сплавов применяют борные, углеродные волокна и волокна из карбида кремния. Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана. Для повышения жаропрочности армируют вольфрамовой проволокой. Механические свойства некоторых композиционных материалов приведены в табл.2.9.1.

КМ на металлической обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в КМ уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых КМ является анизотропия механических свойств вдоль и поперек сечения материала и малая чувствительность к концентраторам напряжений.


Рис. 2.9.2. Схемы структуры композиционных материалов.

 

В отличие от волокнистых КМ, в которых матрица является основным элементом, несущим нагрузку, в дисперсно-упрочненных композиционных материалах (ДУ КМ) дисперсные частицы тормозят движение в ней дислокаций. Высокая прочность достигается при размере частиц 10 - 500 нм при среднем расстоянии между ними 100 - 500 нм и равномерном распределении их в матрице. Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об.%.
Таблица 2.9.1

Механические свойства КМ на металлической основе

Материалы sB , МПа s0,2 , МПа Е, ГПа sB/g Е/g
Бор-алюминий (ВКА-1А) 84,6
Бор- магний (ВКМ-1)
Алюминий- углерод (ВКУ-1)
Алюминий- сталь (КАС-1А) 24,40
Никель-вольфрам (ВКН-1) - - -

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), не растворяющиеся в матричном металле, позволяет сохранять высокую прочность до 0,9-0,95 Тпл. В связи с этим такие материалы чаще применяют как жаропрочные.
Наиболее широко используют сплавы на основе алюминия - САП (спеченный алюминиевый порошок), содержащий в себе дисперсные чешуйки Al2O3 , содержание которых колеблется от 6 - 9 % (САП-1) и до 13 - 18 (САП-3). Прочность при этом увеличивается от 300 МПа до 400 МПа соответственно.
Большие перспективы у никелевых ДУ КМ. Они обладают высокой жаропрочностью. К ним относят такие материалы, как ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель упрочненный двуокисью гафния) и ВД-3 (матрица Ni+20 % Cr) упрочненная окисью тория).
Они применяются в авиации для высоконагруженных деталей самолетов и двигателей, в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, в горной промышленности, в гражданском строительстве и других областях народного хозяйства. Технология получения полуфабрикатов и изделий из КМ достаточно хорошо отработана.

2.9.5. Композиционные материалы с неметаллической матрицей

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц

Наибольшее распространение получили эпоксидные, фенолформальдегидные

и полиимидные. Матрица связывает композицию, придавая ей форму. Уплотнителями служат волокна: стеклянные, углеродные, борные, органические на основе нитевидных кристаллов, а также металлические, обладающие высокой прочностью и жесткостью.
Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композита.

Свойство матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.
По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоскостные слои собираются в пластины, получая анизотропию свойств. Можно создавать материалы, как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев и от схем армирования по толщине пакета зависят изгибные и крутильные жесткости материала и ее механические свойства.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качестве наполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Для практических целей используют волокно диаметром 5-20 мкм с = 600÷3800 МПа и ε = 2÷3,5 %.

Свойства стекловолокна зависят также от содержания в его составе щелочи. Лучшие показатели у бесщелочных стекол алюмоборосиликатного состава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, с металлической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и даже волокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют для изготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качестве связующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательно склеивающихся связующим материалом. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200° С, а также в тропических условиях, выдерживать большие инерционные перегрузки. При старении в течение двух лет коэффициент старения лежит в пределах 0,5÷0,7. Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности с арматурой и резьбой.

Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких и низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим материалом (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризация нитевидных кристаллов TiO, AlN и SiN, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими материалами служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углеродной лентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают на эпоксианилиноформальдегидном связующем, их можно эксплуатировать при температуре до 100° С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связующего материала можно применять при температуре до 300° С.

Карбоволокниты отличаются высоким статистическим и динамическим сопротивлением усталости, сохраняют это свойство при нормальной и очень низкой температуре, (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они и химически и водостойкие. После воздействия на воздухе рентгеновского излучения их Е почти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чем теплопроводность стеклопластиков. Они имеют следующие электрические свойства: = 0,0024÷0,0034 Ом·см (вдоль волокон); ε = 10 и tg = 0,001 (при частоте тока 10Гц). Карбостекловолокниты содержат наряду с угольными волокнами стеклянные волокна, что удешевляет материал.

При температуре 800-1500 °С образуются карбонизированные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100° С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5-10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200° С, на воздухе окисляется при 450 °С и требует защитного покрытия.

Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).

Высокая энергия связи С-С углеродных волокон позволяет сохранять прочность, как при очень высоких температурах (в нейтральной и восстановительной средах до 22000С), так и при низких температурах.

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя – борных волокон. Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокой твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна, применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, предающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать при температуре не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями усталости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Поскольку борные волокна являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью: λ = 45 кДж/(м∙К); α = 4∙10С(вдоль волокон); = 1,94∙10Ом∙см; ε = 12,6÷20,5 (при частоте тока 10Гц); tg δ = 0,02÷0,051 (при частоте тока 10Гц). Для бороволокнитов прочность при сжатии в 2-2,5 раза больше, чем для карбоволокнитов.

Изделия из бороволокнитов применяют в авиационной и космической технике.

Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокой удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических волокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки. Происходит диффузия компонентов связующего материала в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористось не превышает 1-3 % (в других материалах 10-20 %). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700 кДж/м²). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100-150 °С, а на основе полиимидного связующего и полиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнами применяют минеральные волокна (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью.

Происходит диффузия компонентов связующего в волокно и химические взаимодействия между ними. Пористость не превышает 1–3%. Отсюда стабильность механических свойств орговолокнитов при перепаде температур, действии ударных и циклических нагрузок. Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластических волокон).
Они устойчивы в агрессивных средах; диэлектрические свойства высокие, а теплопроводность низкая. В комбинированных материалах наряду с синтетическими волокнами применяют минеральные. Такие материалы обладают большей прочностью и жесткостью.

Свойства основных композитов с неметаллической матрицей приведены в табл.2.9.

Композиционные материалы с неметаллической матрицей, а именно полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и другом.

 

 

Таблица 2.9.2.

Физико-механические свойства композитов с неметаллической матрицей.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов и трансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости для реактивов, покрытия корпусов судов и т.д.