Методы, меры и средства обеспечения информационной безопасности.

В деле обеспечения информационной безопасности успех может принести только комплексный подход. Мы уже указывали, что для защиты интересов субъектов информационных отношений необходимо сочетать меры следующих уровней:

· законодательного;

· административного (приказы и другие действия руководства организаций, связанных с защищаемыми информационными системами);

· процедурного (меры безопасности, ориентированные на людей);

· программно-технического.

Законодательный уровень является важнейшим для обеспечения информационной безопасности. Большинство людей не совершают противоправных действий не потому, что это технически невозможно, а потому, что это осуждается и/или наказывается обществом, потому, что так поступать не принято.

Мы будем различать на законодательном уровне две группы мер:

· меры, направленные на создание и поддержание в обществе негативного (в том числе с применением наказаний) отношения к нарушениям и нарушителям информационной безопасности (назовем их мерами ограничительной направленности);

· направляющие и координирующие меры, способствующие повышению образованности общества в области информационной безопасности, помогающие в разработке и распространении средств обеспечения информационной безопасности (меры созидательной направленности).

· К административному уровню информационной безопасностиотносятся действия общего характера, предпринимаемые руководством организации.

· Главная цель мер административного уровня - сформировать программу работ в области информационной безопасности и обеспечить ее выполнение, выделяя необходимые ресурсы и контролируя состояние дел.

· Основой программы является политика безопасности, отражающая подход организации к защите своих информационных активов. Руководство каждой организации должно осознать необходимость поддержания режима безопасности и выделения на эти цели значительных ресурсов.

· Программно-технические меры, то есть меры, направленные на контроль компьютерных сущностей - оборудования, программ и/или данных, образуют последний и самый важный рубеж информационной безопасности. Напомним, что основную часть ущерба наносят действия легальных пользователей, по отношению к которым процедурные регуляторы не могут дать решающего эффекта. Главные враги - некомпетентность и неаккуратность при выполнении служебных обязанностей, и только программно-технические меры способны им противостоять.

· Компьютеры помогли автоматизировать многие области человеческой деятельности. Вполне естественным представляется желание возложить на них и обеспечение собственной безопасности. Даже физическую защиту все чаще поручают не охранникам, а интегрированным компьютерным системам, что позволяет одновременно отслеживать перемещения сотрудников и по пространству организации, и по информационному пространству. Это вторая причина, объясняющая важность программно-технических мер.

Процедурный уровень - меры безопасности, которые ориентированы на людей, а не на технические средства. Именно люди формируют режим информационной безопасности и они же оказываются главной угрозой, поэтому "человеческий фактор" заслуживает первостепенного внимания.

В отечественных организациях накоплен богатый опыт регламентирования и реализации процедурных (организационных) мер, однако проблема состоит в том, что они пришли из докомпьютерного прошлого, поэтому нуждаются в существенном пересмотре.

Следует осознать ту степень зависимости от компьютерной обработки данных, в которую попало современное общество. Без всякого преувеличения, нужна информационная гражданская оборона. Спокойно, без нагнетания страстей, нужно разъяснять обществу не только преимущества, но и опасности, вытекающие из использования информационных технологий. Акцент следует делать не на военной или криминальной стороне дела, а на чисто гражданских аспектах, связанных с поддержанием нормального функционирования аппаратного и программного обеспечения, то есть концентрироваться на вопросах доступности и целостности данных.

На процедурном уровне можно выделить следующие классы мер:

· управление персоналом;

· физическая защита;

· поддержание работоспособности;

· реагирование на нарушения режима безопасности;

· планирование восстановительных работ.

Методы обеспечения ИБ:

· препятствие – метод физического преграждения пути злоумышленнику к информации;

· управление доступом – метод защиты с помощью регулирования использования информационных ресурсов системы;

· маскировка – метод защиты информации путем ее криптографического преобразования;

· регламентация – метод защиты информации, создающий условия автоматизированной обработки, при которых возможности несанкционированного доступа сводится к минимуму;

· принуждение – метод защиты, при котором персонал вынужден соблюдать правила обработки, передачи и использования информации;

· побуждение – метод защиты, при котором пользователь побуждается не нарушать режимы обработки, передачи и использования информации за счет соблюдения этических и моральных норм.

Средства защиты:

· технические средства – различные электрические, электронные и компьютерные устройства;

· физические средства – реализуются в виде автономных устройств и систем;

· программные средства – программное обеспечение, предназначенное для выполнения функций защиты информации;

· криптографические средства – математические алгоритмы, обеспечивающие преобразования данных для решения задач информационной безопасности;

· организационные средства – совокупность организационно-технических и организационно-правовых мероприятий;

· морально-этические средства – реализуются в виде норм, сложившихся по мере распространения ЭВМ и информационных технологий;

· законодательные средства– совокупность законодательных актов, регламентирующих правила пользования ИС, обработку и передачу информации.

 


Защита информации в персональных компьютерах. Угрозы информации в ЭВМ. Парольная защита информации. Способы разграничения доступа к информации. Идентификация и аутентификация пользователей. Компьютерные вирусы, виды и борьба с ними. Программные закладки и их разновидности.

Защита информации имеет огромное значение в повседневной жизни, тем более в персональных компьютерах.

Персональные компьютеры (ПК) обладают всеми свойствами ЭВМ других классов, поэтому, вообще говоря, все проблемы защиты информации в построенных на их основе системах и подходы к защите аналогичны другим классам. Однако персональным компьютерам присущ ряд таких свойств, которые, с одной стороны, благоприятствуют защите, а с другой — затрудняют ее и усложняют.

К основным из указанных свойств относятся:

· малые габариты и вес, что делает их не просто транспортабельными, а легко переносимыми;

· наличие встроенного внутреннего ЗУ большого объема, сохраняющего записанные данные после выключения питания;

· наличие сменного ЗУ большого объема и малых габаритов;

· наличие устройств сопряжения с каналами связи;

· оснащенность программным обеспечением с широкими функциональными возможностями;

· массовость производства и распространения;

· относительно низкая стоимость.

Применительно к защите информации в ПК справедливо практически все сказанное ранее относительно защиты ее в АСОД вообще. Естественно, это относится и к вопросу об угрозах информации. Однако специфические особенности архитектурного построения и способов использования ПК позволяют конкретизировать значительную часть угроз (каналов утечки) информации. Характерные для ПК каналы принято классифицировать по типу средств, которые используются в целях несанкционированного получения по ним информации, причем выделяются три типа средств: человек, аппаратура, программа.

Группу каналов, в которых основным средством несанкционированного получения информации является человек, составляют:

· хищение носителей информации (магнитных дисков и дискет, распечаток и т. д.);

· чтение или фотографирование информации с экрана;

· чтение или фотографирование информации с распечаток.

В группе каналов, основным средством использования которых служит аппаратура, выделяют:

· подключение к устройствам ПК специальной аппаратуры, с помощью которой можно уничтожать или регистрировать защищаемую информацию;

· регистрацию с помощью специальных средств электромагнитных излучений устройств ПК в процессе обработки" защищаемой информации.

Наконец, третью группу каналов (основное средство использования которых — программы) образуют:

· программный несанкционированный доступ к информации;

· уничтожение (искажение) или регистрация защищаемой информации с помощью программных закладок или ловушек;

· чтение остаточной информации из ОЗУ;

· программное копирование информации с магнитных носителей.

Носители информации могут быть персонального, группового и общего использования.

Для разработки мероприятий защиты информации необходимы следующие исходные характеристики элементов защиты:

· возможные объемы находящейся в них информации;

· возможная продолжительность пребывания информации;

· возможные угрозы информации;

· возможные средства защиты.

Как и для объектов защиты, значения этих характеристик для всех элементов защиты целесообразно свести в специальный каталог.

Опознавание (аутентификация) пользователей и используемых компонентов обработки информации.

В концептуальном плане решение данной задачи принципиально не отличается от аналогичной задачи, решаемой в любой АСОД: система защиты должна надежно определять законность каждого обращения к ресурсам, а законный пользователь должен иметь возможность, убедиться, что ему предоставляются именно те компоненты (аппаратура, программы, массивы данных), которые ему необходимы.

Для опознавания пользователей к настоящему времени разработаны и нашли практическое применение следующие способы:

· с использованием простого пароля;

· в диалоговом режиме с использованием нескольких паролей и/или персональной информации пользователей;

· по индивидуальным особенностям и физиологическим характеристикам человека (отпечатки пальцев, геометрия руки, голос, персональная роспись, структура сетчатки глаза, фотография и некоторые другие);

· с использованием радиокодовых устройств;

· с использованием электронных карточек.

Разграничение доступа к элементам защищаемой информации заключается в том, чтобы каждому зарегистрированному пользователю предоставить возможности беспрепятственного доступа к информации в пределах его полномочий и исключить возможности превышения своих полномочий. В этих целях разработаны и реализованы на практике методы и средства разграничения доступа к устройствам ЭВМ, к программам обработки информации, к полям (областям ЗУ) и к массивам (базам) данных. Само разграничение может осуществляться несколькими способами, а именно:

· по уровням (кольцам) секретности;

· по специальным спискам;

· по так называемым матрицам полномочий;

· по специальным мандатам.

Программные закладки (РПС) с точки зрения массового пользователя представляются особо опасными в силу сравнительной (относительно аппаратных) простоты их осуществления, высокой динамичности их распространения и повышенной трудности защиты от них. Так, если в итоге специальных проверок аппаратные закладки не были обнаружены или они были ликвидированы (нейтрализована возможность их действия), то с высокой степенью можно быть уверенными в их отсутствии в соответствующей ПК. Программные же закладки могут появиться в любое время, чему особенно способствуют следующие обстоятельства;

· массовый обмен информацией на гибких МД, принявший к настоящему времени характер броуновского движения;

· широкое распространение копий программ, приобретенных незаконным путем;

· возможности дистанционного воздействия на ПК, подключенные к сети;

· широкий и непрерывно растущий диапазон разновидностей закладок, что усложняет процессы их обнаружения и нейтрализации.

К настоящему времени известно значительное количество закладок, получивших такие условные наименования: троянский конь, бомба, ловушка, люк, вирус, червь.

 


Проблемы защиты информации. Криптографические методы и средства защиты в компьютерных системах и каналах связи. Понятия кодирования и шифрования. Симметричные и асимметричные системы шифрования. Шифр Вижинера. Метод RSA. Криптография и схема шифрования на основе алгоритма Диффи-Хеллмана. Шифрующая файловая система EFS (архитектура, технология шифрования, ее место в ОС Windows).

Криптографические методы защиты информации - это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ.

Современная криптография включает в себя четыре крупных раздела:

· Симметричные криптосистемы. В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный);

· Криптосистемы с открытым ключом. В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.(Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.);

· Электронная подпись. Системой электронной подписи. называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

· Управление ключами. Это процесс системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Алгоритм шифрования с открытым ключом RSA был предложен одним из первых в конце 70-х годов ХХ века. Его название составлено из первых букв фамилий авторов: Р.Райвеста (R.Rivest), А.Шамира (A.Shamir) и Л.Адлемана (L.Adleman). Алгоритм RSA является, наверно, наиболее популярным и широко применяемым асимметричным алгоритмом в криптографических системах.

Алгоритм основан на использовании того факта, что задача разложения большого числа на простые сомножители является трудной. Криптографическая система RSA базируется на следующих двух фактах из теории чисел:

1. задача проверки числа на простоту является сравнительно легкой;

2. задача разложения чисел вида n = pq ( р и q — простые числа); на множители является очень трудной, если мы знаем только n, а р и q — большие числа.

Алгоритм RSA представляет собой блочный алгоритм шифрования, где зашифрованные и незашифрованные данные должны быть представлены в виде целых чисел между 0 и n -1 для некоторого n.

Первая публикация данного алгоритма появилась в 70-х годах ХХ века в статье Диффи и Хеллмана, в которой вводились основные понятия криптографии с открытым ключом. Алгоритм Диффи-Хеллмана не применяется для шифрования сообщений или формирования электронной подписи. Его назначение – в распределении ключей. Он позволяет двум или более пользователям обменяться без посредников ключом, который может быть использован затем для симметричного шифрования. Это была первая криптосистема, которая позволяла защищать информацию без использования секретных ключей, передаваемых по защищенным каналам. Схема открытого распределения ключей, предложенная Диффи и Хеллманом, произвела настоящую революцию в мире шифрования, так как снимала основную проблему классической криптографии – проблему распределения ключей.

Алгоритм основан на трудности вычислений дискретных логарифмов. Попробуем разобраться, что это такое. В этом алгоритме, как и во многих других алгоритмах с открытым ключом, вычисления производятся по модулю некоторого большого простого числа Р. Вначале специальным образом подбирается некоторое натуральное число А, меньшее Р. Если мы хотим зашифровать значение X, то вычисляем

Y = AX mod P.

Причем, имея Х, вычислить Y легко. Обратная задача вычисления X из Y является достаточно сложной. Экспонента X как раз и называется дискретным логарифмом Y. Таким образом, зная о сложности вычисления дискретного логарифма, число Y можно открыто передавать по любому каналу связи, так как при большом модуле P исходное значение Х подобрать будет практически невозможно. На этом математическом факте основан алгоритм Диффи-Хеллмана для формирования ключа.

Шифр Виженера это метод шифрования буквенного текста с использованием ключевого слова.

Этот метод является простой формой многоалфавитной замены. Шифр Виженера изобретался многократно. Впервые этот метод описал Джованни-Баттиста Беллазо (Giovan Battista Bellaso) в книге La cifra del. Sig. Giovan Battista Bellasо в 1553 году , однако в 19 веке получил имя Блеза Виженера , швейцарского дипломата. Метод прост для понимания и реализации, он является недоступным для простых методов криптоанализа.

Квадрат Виженера или таблица Виженера, может быть использована для заширования и расшифрования.

В шифре Цезаря каждая буква алфавита сдвигается на несколько позиций; например в шифре Цезаря при сдвиге +3, A стало бы D, B стало бы E и так далее. Шифр Виженера состоит из последовательности нескольких шифров Цезаря с различными значениями сдвига. Для зашифрования может использоваться таблица алфавитов, называемая квадрат Виженера. Применительно к латинскому алфавиту таблица Виженера составляется из строк по 26 символов, причём каждая следующая строка сдвигается на несколько позиций. Таким образом, в таблице получается 26 различных шифров Цезаря. На разных этапах кодировки шифр Виженера использует различные алфавиты из этой таблицы. На каждом этапе шифрования используются различные алфавиты, выбираемые в зависимости от символа ключевого слова.

Шифрующая файловая система это тесно интегрированная с NTFS служба, располагающаяся в ядре Windows 2000. Ее назначение: защита данных, хранящихся на диске, от несанкционированного доступа путем их шифрования. Появление этой службы не случайно, и ожидалось давно. Дело в том, что существующие на сегодняшний день файловые системы не обеспечивают необходимую защиту данных от несанкционированного доступа.

EFS использует архитектуру Windows CryptoAPI. В ее основе лежит технология шифрования с открытым ключом. Для шифрования каждого файла случайным образом генерируется ключ шифрования файла. При этом для шифрования файла может применяться любой симметричный алгоритм шифрования. В настоящее же время в EFS используется один алгоритм, это DESX, являющийся специальной модификацией широко распространенного стандарта DES.

Ключи шифрования EFS хранятся в резидентном пуле памяти (сама EFS расположена в ядре Windows 2000), что исключает несанкционированный доступ к ним через файл подкачки.

 

 


Защита информации в компьютерных сетях. Механизмы защиты информации в сетях ЭВМ. Электронная цифровая подпись. Интернет – безопасность. Межсетевые экраны (брандмауэры), виды и применение.

Интернет страдает от серьезных проблем с безопасностью. Организации, которые игнорируют эти проблемы, подвергают себя значительному риску того, что они будут атакованы злоумышленниками, и что они могут стать стартовой площадкой при атаках на другие сети. Даже те организации, которые заботятся о безопасности, имеют те же самые проблемы из-за появления новых уязвимых мест в сетевом программном обеспечении(ПО) и отсутствия мер защиты от некоторых злоумышленников.

Некоторые из проблем безопасности в Интернете - результат наличия уязвимых мест из-за ошибок при проектировании в службах( и в протоколах, их реализующих) , в то время как другие - результат ошибок при конфигурировании хоста или средств управления доступом, которые или плохо установлены или настолько сложны, что с трудом поддаются администрированию. Это усугубляется быстрым ростом Интернета и характера использования Интернета; государственные и коммерческие организации теперь зависят от Интернета( иногда даже больше: чем они думают) при взаимодействии с другими организациями и исследованиях и поэтому понесут большие потери при атаках на их хосты. Классифицируем возможные нарушения, которые могут вызвать потери или изменение пересылаемой информации. Среди потенциальных проблем выделим следующие:

1. Сбои в работе оборудования:

- сбои кабельной системы;

- перебои в системе электропитания;

- поломки дисковых накопителей;

- ошибки в работе серверов, рабочих станций и т.п.

2. Потери информации из-за ошибок в работе программного обеспечения:

- потери данных из-за ошибок в работе операционных систем;

- потери данных при заражении компьютера вирусами.

3. Потери, связанные с несанкционированным доступом:

- незаконное копирование, уничтожение информации;

- ознакомление с информацией, представляющей тайну.

4. Потери информации, связанные с неправильным хранением информации.

5. Ошибки обслуживающего персонала:

- случайное уничтожение данных;

- неправильное использование программного обеспечения, повлекшее потерю данных.

В зависимости от видов возможных правонарушений, многочисленные виды защиты информации подразделяют на три основных вида:

- Программные средства защиты, например, антивирусные пакеты, системы многопользовательского доступа и т.п.

- Средства физической защиты, включая защиту кабельных систем, использование всевозможных источников бесперебойного питания, защиту помещений от постороннего доступа, резервное копирование информации.

- Административные средства защиты, можно сказать, объединяют первые два пункта, формируя политику информационной безопасности компании.

Безусловно, четких границ между этими видами защиты информации не существует. Наиболее часто применяются комплексные методы борьбы, можно назвать их программно-аппаратными.

Электро́нная цифрова́я по́дпись (ЭЦП) — реквизит электронного документа, позволяющий установить отсутствие искажения информации в электронном документе с момента формирования ЭЦП и проверить принадлежность подписи владельцу сертификата ключа ЭЦП. Значение реквизита получается в результате криптографического преобразования информации с использованием закрытого ключа ЭЦП.

Цифровая подпись предназначена для аутентификации лица, подписавшего электронный документ. Кроме этого, использование цифровой подписи позволяет осуществить:

· Контроль целостности передаваемого документа: при любом случайном или преднамеренном изменении документа подпись станет недействительной, потому что вычислена она на основании исходного состояния документа и соответствует лишь ему.

· Защиту от изменений (подделки) документа: гарантия выявления подделки при контроле целостности делает подделывание нецелесообразным в большинстве случаев.

· Невозможность отказа от авторства. Так как создать корректную подпись можно, лишь зная закрытый ключ, а он должен быть известен только владельцу, то владелец не может отказаться от своей подписи под документом.

· Доказательное подтверждение авторства документа: Так как создать корректную подпись можно, лишь зная закрытый ключ, а он должен быть известен только владельцу, то владелец пары ключей может доказать своё авторство подписи под документом. В зависимости от деталей определения документа могут быть подписаны такие поля, как «автор», «внесённые изменения», «метка времени» и т. д.

Все эти свойства ЭЦП позволяют использовать её для следующих целей:

· Декларирование товаров и услуг (таможенные декларации)

· Регистрация сделок по объектам недвижимости

· Использование в банковских системах

· Электронная торговля и госзаказы

· Контроль исполнения государственного бюджета

· В системах обращения к органам власти

· Для обязательной отчетности перед государственными учреждениями

· Организация юридически значимого электронного документооборота

· В расчетных и трейдинговых системах.

Межсетевой экран или сетевой экран — комплекс аппаратных или программных средств, осуществляющий контроль и фильтрацию проходящих через него сетевых пакетов в соответствии с заданными правилами.

Основной задачей сетевого экрана является защита компьютерных сетей или отдельных узлов от несанкционированного доступа. Также сетевые экраны часто называют фильтрами, так как их основная задача — не пропускать (фильтровать) пакеты, не подходящие под критерии, определённые в конфигурации.

В зависимости от отслеживания активных соединений сетевые экраны бывают:

1. stateless (простая фильтрация), которые не отслеживают текущие соединения (например, TCP), а фильтруют поток данных исключительно на основе статических правил;

2. stateful, stateful packet inspection (SPI) (фильтрация с учётом контекста), с отслеживанием текущих соединений и пропуском только таких пакетов, которые удовлетворяют логике и алгоритмам работы соответствующих протоколов и приложений. Такие типы сетевых экранов позволяют эффективнее бороться с различными видами DoS-атак и уязвимостями некоторых сетевых протоколов. Кроме того, они обеспечивают функционирование таких протоколов, как H.323, SIP, FTP и т. п., которые используют сложные схемы передачи данных между адресатами, плохо поддающиеся описанию статическими правилами, и, зачастую, несовместимых со стандартными, stateless сетевыми экранами.

 


Обзор языков программирования и их классификация.

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования. Смысл появления такого языка – оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм.

Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко.

Классификация языков программирования