Технологии защиты информации

Геоинформационные технологии

В настоящее время в соответствии с требованиями новых информационных технологий создаются и функционируют многие системы управления, связанные с необходимостью отображения информации на электронной карте:

• геоинформационные системы;

• системы федерального и муниципального управления;

• системы проектирования;

• системы военного назначения и т.д.

Эти системы управления регулируют деятельность технических и социальных систем, функционирующих в некотором операцион­ном пространстве (географическом, экономическом и т.п.) с явно выраженной пространственной природой.

При решении задач социального и технического регулирования в системах управления используется масса пространственной ин­формации: топография, гидрография, инфраструктура, коммуника­ции, размещение объектов.

Графическое представление какой-либо ситуации на экране компьютера подразумевает отображение различных графических образов. Сформированный на экране ЭВМ графический образ со­стоит из двух различных с точки зрения среды хранения час­тей — графической «подложки» или графического фона и других графических объектов. По отношению к этим другим графическим образам «образ-подложка» является «площадным», или простран­ственным двухмерным изображением. Основной проблемой при реализации геоинформационных приложений является трудность формализованного описания конкретной предметной области и ее отображения на электронной карте.

Таким образом, геоинформационные технологии предназначе­ны для широкого внедрения в практику методов и средств работы с пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Основным классом данных геоинформационных систем (ГИС) являются координатные данные, содержащие геометрическую ин­формацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (не­замкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.).

Наряду с позитивным влиянием на все стороны человеческой деятельности широкое внедрение информационных технологий привело к появлению новых угроз безопасности людей. Это связа­но с тем обстоятельством, что информация, создаваемая, хранимая и обрабатываемая средствами вычислительной техники, стала оп­ределять действия большей части людей и технических систем. В связи с этим резко возросли возможности нанесения ущерба, свя­занные с хищением информации, так как воздействовать на любую систему (социальную, биологическую или техническую) с целью ее уничтожения, снижения эффективности функционирования или воровства ее ресурсов (денег, товаров, оборудования) возможно только в том случае, когда известна информация о ее структуре и принципах функционирования.

Все виды информационных угроз можно разделить на две боль­шие группы:

• отказы и нарушения работоспособности программных и технических средств;

• преднамеренные угрозы, заранее планируемые злоумышлен­никами для нанесения вреда.

Выделяют следующие основные группы причин сбоев и отказов в работе компьютерных систем:

• нарушения физической и логической целостности хранящих­ся в оперативной и внешней памяти структур данных, возникаю­щие по причине старения или преждевременного износа их носи­телей;

• нарушения, возникающие в работе аппаратных средств из-за их старения или преждевременного износа;

• нарушения физической и логической целостности хранящих­ся в оперативной и внешней памяти структур данных, возникаю­щие по причине некорректного использования компьютерных ре­сурсов;

• нарушения, возникающие в работе аппаратных средств из-за неправильного использования или повреждения, в том числе из-за неправильного использования программных средств;

• неустраненные ошибки в программных средствах, не выяв­ленные в процессе отладки и испытаний, а также оставшиеся в ап­паратных средствах после их разработки.

Защита от некорректного использования информационных ре­сурсов заключается в корректном функционировании программ­ного обеспечения с позиции использования ресурсов вычисли­тельной системы. Программа может четко и своевременно выпол­нять свои функции, но некорректно использовать компьютерные ресурсы из-за отсутствия всех необходимых функций (например, изолирование участков оперативной памяти для операционной системы и прикладных программ, защита системных областей на внешних носителях, поддержка целостности и непротиворечиво­сти данных).

Выявление и устранение ошибок при разработке программ­но-аппаратных средств достигается путем качественного выполне­ния базовых стадий разработки на основе системного анализа кон­цепции, проектирования и реализации проекта.

Однако основным видом угроз целостности и конфиденциаль­ности информации являются преднамеренные угрозы, заранее пла­нируемые злоумышленниками для нанесения вреда. Их можно раз­делить на две группы:

• угрозы, реализация которых выполняется при постоянном участии человека;

• угрозы, реализация которых после разработки злоумышлен­ником соответствующих компьютерных программ выполняется этими программами без непосредственного участия человека.

Задачи по защите от угроз каждого вида одинаковы:

• запрещение несанкционированного доступа к ресурсам вычислительных систем;

• невозможность несанкционированного использования ком­пьютерных ресурсов при осуществлении доступа;

• своевременное обнаружение факта несанкционированных действии, устранение их причин и последствий.

Основным способом запрещения несанкционированного досту­па к ресурсам вычислительных систем является подтверждение подлинности пользователей и разграничение их доступа к инфор­мационным ресурсам, включающего следующие этапы:

• идентификация;

• установление подлинности (аутентификация);

• определение полномочий для последующего контроля и раз­граничения доступа к компьютерным ресурсам.

Идентификация необходима для указания компьютерной систе­ме уникального идентификатора обращающегося к ней пользовате­ля. Идентификатор может представлять собой любую последова­тельность символов и должен быть заранее зарегистрирован в сис­теме администратора службы безопасности. В процессе регистра­ции заносится следующая информация:

• фамилия, имя, отчество (при необходимости другие характе­ристики пользователя);

• уникальный идентификатор пользователя;

• имя процедуры установления подлинности;

• эталонная информация для подтверждения подлинности (на­пример, пароль);

• ограничения на используемую эталонную информацию (на­пример, время действия пароля);

• полномочия пользователя по доступу к компьютерным ресур­сам.

Установление подлинности (аутентификация) заключается в проверке истинности полномочий пользователя.

Общая схема идентификации и установления подлинности пользователя представлена на рис.5.6.

Для особо надежного опознания при идентификации исполь­зуются технические средства, определяющие индивидуальные ха­рактеристики человека (голос, отпечатки пальцев, структура зрачка). Однако такие методы требуют значительных затрат и поэтому используются редко.

Наиболее массово используемыми являются парольные методы проверки подлинности пользователей. Пароли можно разделить на две группы: простые и динамически изме­няющиеся.

Простой пароль не изменяется от сеанса к сеансу в течение установленного периода его существования.

Во втором случае пароль изменяется по правилам, определяе­мым используемым методом. Выделяют следующие методы реали­зации динамически изменяющихся паролей:

• методы модификации простых паролей. Например, случайная выборка символов пароля и одноразовое использование паролей;

• метод «запрос—ответ», основанный на предъявлении пользо­вателю случайно выбираемых запросов из имеющегося массива;

• функциональные методы, основанные на использовании не­которой функции F с динамически изменяющимися параметрами (дата, время, день недели и др.), с помощью которой определяется пароль.

Для защиты от несанкционированного входа в компьютерную систему используются как общесистемные, так и специализирован­ные программные средства защиты.

После идентификации и аутентификации пользователя система защиты должна определить его полномочия для последующего контроля санкционированного доступа к компьютерным ресурсам (разграничение доступа). В качестве компьютерных ресурсов рас­сматриваются:

• программы;

• внешняя память (файлы, каталоги, логические диски);

• информация, разграниченная по категориям в базах данных;

• оперативная память;

• время (приоритет) использования процессора;

• порты ввода-вывода;

• внешние устройства.

Различают следующие виды прав пользователей по доступу к ресурсам:

• всеобщее (полное предоставление ресурса);

• функциональное или частичное;

• временное.

Наиболее распространенными способами разграничения досту­па являются:

• разграничение по спискам (пользователей или ресурсов);

• использование матрицы установления полномочий (строки матрицы — идентификаторы пользователей, столбцы — ресурсы компьютерной системы);

• разграничение по уровням секретности и категориям (напри­мер, общий доступ, конфиденциально, секретно);

• парольное разграничение.

Защита информации от исследования и копирования предпола­гает криптографическое закрытие защищаемых от хищения дан­ных. Задачей криптографии является обратимое преобразование некоторого понятного исходного текста (открытого текста) в кажу­щуюся случайной последовательность некоторых знаков, часто на­зываемых шифротекстом, или криптограммой. В шифре выделяют два основных элемента — алгоритм и ключ. Алгоритм шифрования представляет собой последовательность преобразований обрабаты­ваемых данных, зависящих от ключа шифрования. Ключ задает значения некоторых параметров алгоритма шифрования, обеспечи­вающих шифрование и дешифрование информации. В криптографической системе информация I и ключ К являются входными данными для шифрования (рис. 5.7) и дешифрования (рис. 5.8) ин­формации. При похищении информации необходимо знать ключ и алгоритм шифрования.

 

По способу использования ключей различают два типа крипто­графических систем: симметрические и асимметрические.

В симметрических (одноключевых) криптографических систе­мах ключи шифрования и дешифрования либо одинаковы, либо легко выводятся один из другого.

В асимметрических (двухключевых или системах с открытым Ключом) криптографических системах ключи шифрования и де­шифрования различаются таким образом, что с помощью вычисле­ний нельзя вывести один ключ из другого.

Одним из сдерживающих факторов массового применения ме­тодов шифрования является потребление значительных временных ресурсов при программной реализации большинства хорошо из­вестных шифров (DES, FEAL, REDOC, IDEA, ГОСТ). Одной из основных угроз хищения информации является угро­за доступа к остаточным данным в оперативной и внешней памяти компьютера. Под остаточной информацией понимают данные, ос­тавшиеся в освободившихся участках оперативной и внешней па­мяти после удаления файлов пользователя, удаления временных файлов без ведома пользователя, находящиеся в неиспользуемых хвостовых частях последних кластеров, занимаемых файлами, а также в кластерах, освобожденных после уменьшения размеров файлов и после форматирования дисков.

Основным способом защиты от доступа к конфиденциальным остаточным данным является своевременное уничтожение данных в следующих областях памяти компьютера:

• в рабочих областях оперативной и внешней памяти, выделен­ных пользователю, после окончания им сеанса работы;

• в местах расположения файлов после выдачи запросов на их удаление.

Уничтожение остаточных данных может быть реализовано либо средствами операционных сред, либо с помощью специализиро­ванных программ. Использование специализированных программ (автономных или в составе системы защиты) обеспечивает гаранти­рованное уничтожение информации.

Подсистема защиты от компьютерных вирусов (специально разработанных программ для выполнения несанкционированных действий) является одним из основных компонентов системы за­щиты информации и процесса ее обработки в вычислительных системах.

Выделяют три уровня защиты от компьютерных вирусов:

• защита от проникновения в вычислительную систему вирусов известных типов;

• углубленный анализ на наличие вирусов известных и неиз­вестных типов, преодолевших первый уровень защиты;

• защита от деструктивных действий и размножения вирусов, преодолевших первые два уровня.

Поиск и обезвреживание вирусов осуществляются как автоном­ными антивирусными программными средствами (сканеры), так и в рамках комплексных систем защиты информации.

Безопасность информации при сетевом обмене данными требу­ет также обеспечения их конфиденциальности и подлинности. За­щита информации в процессе передачи достигается на основе защиты каналов передачи данных, а также криптографического за­крытия передаваемых сообщений. В идеальном случае защита ка­налов передачи данных должна обеспечивать их защиту как от на­рушений работоспособности, так и несанкционированных дейст­вий (например, подключения к линиям связи). По причине боль­шой протяженности каналов связи, а также возможной доступно­сти их отдельных участков (например, при беспроводной связи) защита каналов передачи данных от несанкционированных действий экономически неэффективна, а в ряде случаев невозможна. Поэто­му реально защита каналов передачи данных строится на основе защиты нарушений их работоспособности. На рис. 5.9 представле­ны цели и способы защиты передаваемых данных.