Точки разрыва

Связанные определения

Комментарии

Определение

Определения

Непрерывная функция

История

Обозначение «„O“ большое» введено немецким математиком Паулем Бахманом (англ.) во втором томе его книги «Analytische Zahlentheorie» (Аналитическая теория чисел), вышедшем в 1894 году. Обозначение «„о“ малое» впервые использовано другим немецким математиком, Эдмундом Ландау в 1909 году; с работами последнего связана и популяризация обоих обозначений, в связи с чем их также называют символами Ландау. Обозначение пошло от немецкого слова «Ordnung» (порядок).


Непрерывная функция — функция без «скачков», то есть такая у которой малые изменения аргумента приводят к малым изменениям значения отображения. График непрерывной функции может быть начерчен «не отрывая карандаш от бумаги».

Непрерывная функция вообще говоря, — синоним понятия непрерывное отображение, тем не менее, чаще всего этот термин используется в более узком смысле — для отображений между числовыми пространствами, например, на вещественной прямой. Эта статья посвящена именно непрерывным функциям, определённым на подмножестве вещественных чисел и принимающих вещественные значения.

Содержание · 1 Определения o 1.1 ε-δ определение § 1.1.1 Комментарии · 2 Связанные определения o 2.1 Точки разрыва · 3 Свойства o 3.1 Локальные o 3.2 Глобальные · 4 Примеры o 4.1 Элементарные функции o 4.2 Функция с устранимым разрывом o 4.3 Функция знака o 4.4 Ступенчатая функция o 4.5 Функция Дирихле o 4.6 Функция Римана · 5 Вариации и обобщения o 5.1 Равномерная непрерывность o 5.2 Полунепрерывность o 5.3 Односторонняя непрерывность o 5.4 Непрерывность почти всюду

 

Пусть и .

Функция f непрерывна в точке , если для любого существует δ > 0 такое, что

 

Функция f непрерывна на множестве E, если она непрерывна в каждой точке данного множества.

В этом случае говорят, что функция f класса C0 и пишут: или, подробнее, .

· Из определения следует, что функция непрерывна в каждой изолированной точке своей области определения.

· Определение непрерывности фактически повторяет определение предела функции в данной точке. Другими словами, функция f непрерывна в точке x0, предельной для множества E, если f имеет предел в точке x0, и этот предел совпадает со значением функции f(x0).

· Функция непрерывна в точке, если её колебание в данной точке равно нулю.

Если попытаться построить отрицание свойства непрерывности функции в точке (предельной для области определения), то получится следующее: Существует такая окрестность значения функции в рассматриваемой точке, что сколь близко мы не подходили бы к данной точке, всегда можно будет найти точку, значение в которой окажется за пределами заданной окрестности.

В этом случае говорят, что функция f терпит разрыв в точке a.

 

Возможны два варианта:

· либо предел функции существует, но он не совпадает со значением функции в данной точке:

 

тогда точка a называется точкой устранимого разрыва функции f (в комплексном анализе — устранимая особая точка). Положив можно добиться непрерывности функции в этой точке. Такое изменение значения функции в точке, превращающее функцию в непрерывную в этой точке, называется доопределением по непрерывности.

· либо предела функции в данной точке не существует и тогда. В этом случае для числовой функции, заданной на вещественной прямой (или её подмножестве), возможно существование односторонних пределов. Отсюда возникает классификация точек (неустранимого) разрыва:

o если оба односторонних предела существуют и конечны, но хотя бы один из них отличен от значения функции в данной точке, то такую точку называют точкой разрыва первого рода;

o если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.