Генетические алгоритмы
Алгоритмы ограниченного перебора
Алгоритмы ограниченного перебора были предложены в середине 60-х годов М.М. Бонгардом для поиска логических закономерностей в данных. С тех пор они продемонстрировали свою эффективность при решении множества задач из самых различных областей.
Эти алгоритмы вычисляют частоты комбинаций простых логических событий в подгруппах данных. Примеры простых логических событий: X = a; X < a; X > a; a < X < b и др., где X — какой либо параметр, “a” и “b” — константы. Ограничением служит длина комбинации простых логических событий (у М. Бон-гарда она была равна 3). На основании анализа вычисленных частот делается заключение о полезности той или иной комбинации для установления ассоциации в данных, для классификации, прогнозирования и пр.
|
DM - Data Mining - не основная область применения генетических алгоритмов. Их нужно рассматривать скорее как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее, генетические алгоритмы вошли сейчас в инструментарий методов DM.
Первый шаг при построении генетических алгоритмов — это кодировка исходных логических закономерностей в базе данных, которые именуют хромосомами, а весь набор таких закономерностей называют популяцией хромосом. Далее для реализации концепции отбора вводится способ сопоставления различных хромосом. Популяция обрабатывается с помощью процедур репродукции, изменчивости (мутаций), генетической композиции. Эти процедуры имитируют биологические процессы. Наиболее важные среди них: случайные мутации данных в индивидуальных хромосомах, переходы (кроссинговер) и рекомбинация генетического материала, содержащегося в индивидуальных родительских хромосомах (аналогично гетеросексуальной репродукции), и миграции генов. В ходе работы процедур на каждой стадии эволюции получаются популяции с все более совершенными индивидуумами.
Генетические алгоритмы имеют ряд недостатков. Критерий отбора хромосом и используемые процедуры являются эвристическими и далеко не гарантируют нахождения “лучшего” решения. Как и в реальной жизни, эволюцию может “заклинить” на какой-либо непродуктивной ветви. И, наоборот, можно привести примеры, как два неперспективных родителя, которые будут исключены из эволюции генетическим алгоритмом, оказываются способными произвести высокоэффективного потомка. Это особенно становится заметно при решении высокоразмерных задач со сложными внутренними связями.
|
Деревья решений (decision trees)
Деревья решения являются одним из наиболее популярных подходов к решению задач DM . Они создают иерархическую структуру классифицирующих правил типа "если... то..." (if - then), имеющую вид дерева. Для принятия решения, к какому классу отнести некоторый объект или ситуацию, требуется ответить на вопросы, стоящие в узлах этого дерева, начиная с его корня. Вопросы имеют вид "значение параметра A больше X?". Если ответ положительный, осуществляется переход к правому узлу следующего уровня, если отрицательный — то к левому узлу; затем снова следует вопрос, связанный с соответствующим узлом. Деревья решений не способны находить “лучшие” (наиболее полные и точные) правила в данных. Они реализуют наивный принцип последовательного просмотра признаков и “цепляют” фактически осколки настоящих закономерностей, создавая лишь иллюзию логического вывода.
|