Функции и эволюция клеточной стенки

Поры

Плазмодесмы

Протопласты соседних клеток связаны между собой тонкими нитями цитоплазмы - плазмодесмами. Эти структуры присущи только растительным клеткам.

В нормальном состоянии плазмодесмы невидимы в световой микроскоп, однако, если стимулировать набухание оболочки плазмодесмы, становятся заметными, поэтому выявлены и описаны они были уже достаточно давно. Хотя детали строения плазмодесм изучены сравнительно недавно с помощью электронного микроскопа.

Под электронным микроскопом плазмодесмы выглядят как узкие каналы (диаметром от 30 до 60 нм), выстланные плазматической мембраной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера - десмотрубочка, которая сообщается с эндоплазматическим ретикулом обеих смежных клеток.

Десмотрубка напоминает цитоплазматические микротрубочки или жгутики простейших. Она состоит из 11 спирально расположенных белковых субъедениц.

Вокруг десмотрубки локализируется цитоплазма, которая во многих типах плазмодесм непосредственно не соединяется с цитоплазмой клеток.

В плазмодесмах обнаружена АТФ - азная активность.

Наличие плазмодесм обеспечивает непрерывность цитоплазмы клеток, составляющих органы и ткани. Такая непрерывная система называется симпласт.

Кроме того, за счёт плазмодесм обеспечивается единство эндоплазматической сети, переходящей из клетки в клетку. Единая эндоплазматическая сеть получила название эндопласт.

 

Таким образом, выделяется три непрерывных компартмента в растительных тканях - это:

единая цитоплазма - симпласт,

непрерывный ретикулум - эндопласт и

соприкасающиеся между собой клеточные стенки, вместе с межклетниками составляют непрерывную систему - апопласт.

Размещаются плазмодесмы в стенке либо группами, либо равномерно разбросаны по всей стенке.

Внутренне утолщение клеточной стенки не бывает вполне равномерным. Сформировавшаяся оболочка имеет более толстые и менее утолщенные участки.

Даже в тех случаях, когда стенки, в общем, имеют равномерную толщину, в них, при детальном рассмотрении обнаруживаются небольшие углубления. Эти места, в которых оболочка очень тонка, и называются порами.

Таким образом, поры у растений - это не сквозные многочисленные отверстия, как это понимается в общеупотребительном смысле. У растений порой называют любое неутолщенное место оболочки.

Для обозначения сквозных отверстий у растений используется другое название - перфорации.

Поры в 2-х сосединх клетках располагаются одна против другой, образуя так называемую пару пор.

У клеток с мощной вторичной оболочкой поры в разрезе имеют вид радиальных каналов. На поперечном срезе эти каналы могут иметь разную форму: чаще округлую, реже щелевидную (эллиптическую или крестообразную). Округлые поры обычно формируются в паренхимных клетках, щелевидные - в прозенхимных.

По форме порового канала обычно различают поры 2-х типов: простые и окаймлённые.

Простые поры имеют достаточно ровный канал, с одинаковым диаметром на всём протяжении.

У окаймлённых пор голосеменных растений на первичной оболочке образуется линзовидное утолщение - торус, а выросты вторичных оболочек как бы нависают над торусом.

Окаймлённые поры характерны для водопроводящих элементов древесины. Эти элементы имеют вид длинных труб разного диаметра. По этим трубкам, как по капиллярам, поднимается вода. Понятно, что давление воды в смежных клетках неодинаково. В этом случае торус смещается и прижимается к выступам вторичной оболочки клеток с меньшим давлением.

Обычно к порам приурочены и плазмодесменные канальцы. Нередко через одну пору проходят десятки плазмодесм.

В любом случае, поры, как и плазмодесмы, облегчают диффузию веществ, растворённых в воде, из одной клетки в другую.

Сквозные отверстия клеточных стенок - перфорации особенно характерны для водопроводящих поперечных перегородок водопроводящих члеников сосудов. Как правило, в этих перегородках образуются одна, две или несколько крупных перфораций.

Многочисленные мелкие перфорации имеются в так называемых ситовидных трубках, по этим трубкам также передвигается вода с органическими веществами, но сверху вниз, от листьев к корням.

Являясь продуктом метаболической деятельности протопласта клеточная стенка выполняет ряд функций:

Она защищает клеточное содержимое от повреждений и инфекций (защитная функция);

Клеточная стенка поддерживает форму и определяет размер клетки; стенка играет скелетную (опорную) роль, которая особенно возрастает у наземных растений;

Она имеет большое значение в росте и дифференцировании клетки;

Стенка участвует в ионном обмене и поглощении клеткой веществ;

Единый апопласт способствует перемещению веществ из клетки в клетку внеклеточным путём (проводящая функция);

Структура клеточных стенок предохраняет клетки от избыточной потери воды (покровная функция).

 

Примитивные клетки были окружены слизистым чехлом, состоявшим из пектиновых веществ, как и фрагмопласт, возникающий при митотическом делении в клетках современных растений.

Совершенствование защитной функции клеточной оболочки привело к появлению в её составе гемицеллюлозных компонентов. Форма клетки могла поддерживаться кремниевым и карбонатным наружным чехлом, сохранившимся, как вы знаете из предыдущего курса, у некоторых водорослей. По предположению Фрей-Висслинга первичный слизистый углеводный чехол мог быть предшественником матрикса клеточной стенки.

С возникновением автотрофного способа питания в оболочках клеток в качестве структурного компонента появилась целлюлоза. Выход растений на сушу поставил клеточную стенку перед необходимостью выполнять функцию опоры тела в воздухе. Именно целлюлоза оказалась наиболее оптимальным материалом (в меру прочным и в то же время эластичным) в динамичной и переменчивой среде, где подземным органам растений пришлось испытывать более сильные нагрузки.

Выход на сушу и увеличение размеров растительных организмов привели также к необходимости снабжения клеток водой. Именно с развитием у наземных растений сосудов, проводящих воду, связывают появление в клеточных стенках лигнина. Лигнин не обнаружен у ископаемых океанских и современных водных растений.